• 제목/요약/키워드: 서스펜션암

검색결과 7건 처리시간 0.022초

자동차 알루미늄 서스펜션 암 곡률압출공정에 관한 연구 (A Study on The Curvature Extrusion for Automotive Aluminum Suspension Arm)

  • 이상곤;김병민;오개희
    • 한국정밀공학회지
    • /
    • 제26권2호
    • /
    • pp.71-77
    • /
    • 2009
  • In the automotive industry, aluminum is widely used to reduce the vehicle weight. Aluminum curved extruded components are used for the design of frame parts. This study investigates the curvature extrusion process to produce the aluminum curved suspension arm. In the curvature extrusion process, the bending process is simultaneously carried out with the extrusion process. Firstly, porthole extrusion was investigated by using FE analysis to produce aluminum suspension arm. And then the bending process condition was determined to produce the final suspension arm with the required curvature. In this research, the guide roll movement causes the bending of extruded product. The moving distance and velocity of guide roll were controlled to meet the required curvature of suspension arm. Finally, the curved suspension arm was manufactured by the curvature extrusion experiment under the proposed curvature extrusion condition.

L 형 전륜 로어 암의 대하중 강도 해석 기법 연구 (A Study on the Non-Linear Static Analysis for L-type Front Lower Control Arm)

  • 이순욱;구자석;송민수
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2008년도 추계학술대회A
    • /
    • pp.453-458
    • /
    • 2008
  • Under driving condition, A vehicle experiences various kinds of loads, which brings on the buckling and fracture of suspension systems. Lower control arm (LCA), which consists of 2 bush joints and 1 ball joint connection, is the one of the most important parts in the suspension system. The bush joints absorb the impact load and reduce the vibration from the road. When analyzing the LCA behavior, it is important to understand the material properties and boundary conditions of bushing systems correctly, because of the nonlinearity characteristics of the rubber. In this paper, in order to predict the large scale deformation of the LCA more precisely, three factors are newly suggested, that is, coupling of bush stiffness between translation and rotation, bush extraction force and maximum rotation angle of ball joint. LCA stiffness is estimated by CAE and component test. Analysis and test results are almost same and the validity of considering three factors in LCA analysis is verified.

  • PDF

알루미늄 익스트루포밍 샤시부품 개발 현찰 (Development of aluminium chassis parts applied for Extruforming)

  • 장계원;이우식;김대업;오개희;김종철
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 2006년도 춘계학술대회 논문집
    • /
    • pp.337-340
    • /
    • 2006
  • Aluminum extruded profiles have been mostly used only a few automotive parts until now, such as roof rail, sunroof frame and bumper beams. However, Aluminum Extru-form technology, which was recently developed by foreign advanced manufacturer, made it possible to apply the aluminum extruded profiles to suspension parts of passenger and RV cars. It could be obtained by optimized billet casting, extrusion and stretch bending technology. It was possible to have the excellent weight reduction and the competitive price comparing with conventional process of aluminum for automotive parts. Combining additional process technology such as machining and joining, the application can be extended to various automotive parts. We have developed high strength aluminum alloy and fabricated subframe and suspension arm by extruforming process.

  • PDF

자동차 서스펜션 로워암의 모델링 보조시스템 개발 (Development of Modeling Support System for Lower Arm in Automobile Suspension Module)

  • 이태희;신소영;서창희;권태우;한승호
    • 한국CDE학회논문집
    • /
    • 제11권1호
    • /
    • pp.49-56
    • /
    • 2006
  • In this study, the modeling support system was developed which can make easy and fast FE-modeling and verify the results of static and durability analysis for the lower arm, one of the important parts in automobile suspension module. It took into account of the whole complicated design processes verifying the durability coefficients evaluated by fatigue analysis, which should be used to satisfy a design criteria. To guide the FE-modeling the drive page was constructed by using HTML and XML, which was based on expert's know-hows. It is able to integrate the processes to design the lower arm in practice, so that the standardization of its FE-Modeling is achieved, consequently. The 3 dimensional CAD's geometrical data were changed automatically into pre-defined shell elements under the concept of mesh-offset technique, and then welding elements were treated to connect between target and basic surfaces constructed by the shell elements. This system has also a user interface to control boundary and load ing conditions applied in performing of the static and durability analysis, in which many load cases can be applied simply with the MPCs driven by just few mouse clicks. These were implemented on the platform of MSC.Patran and utilized ANSYS, MSC.Nastran and MSC.Fatigue as the solver of the analysis performed. The developed system brings not only significant decreasing of man-hours required in FE-modeling process, but also obtaining of satisfied qualities in analyzed results. It will be integrated in a part of virtual prototyping module of the developing e-engineering framework.

유연 지그를 이용한 서스펜션 부싱의 비틀림 및 원추 강성 측정기 개발 (Development of a Measurement System of Torsional and Conical Suspension Bushing Rates with the Flexible Jig)

  • 이재곤;박용국;김기대
    • 한국자동차공학회논문집
    • /
    • 제11권1호
    • /
    • pp.121-127
    • /
    • 2003
  • The stiffness of a bushing in a suspension is extremely important for the overall performance of the suspension system. A new measurement system including the flexible jig was developed to measure the multi-directional stiffness of bushings. To overcome the disadvantage of building each individual jig for each type and size of a bushing, we designed the flexible jig which can accommodate numerous bushings of similar shapes and sizes. Upon using the novel design of the flexible jig in the industry, we could successfully measure the torsional and conical stiffness of many bushings and apply the data for the prediction and evaluation of the performance of a suspension system, which would assist designing the optimal suspension system.

서스펜션 암의 포트홀 다이 압출공정 유한요소 해석 (Finite Element Analysis of Porthole Extrusion Process for Al Suspension Arm)

  • 조영준;이상곤;김병민;오개희;박상우
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 2006년도 춘계학술대회 논문집
    • /
    • pp.247-250
    • /
    • 2006
  • The growing demand for more fuel-efficient vehicles to reduce energy consumption and air pollution is a challenge for the automotive industry. The characteristic properties of aluminum, high strengrth stiffness to weight ratio, good formability, good corrosion resistence, and recycling potential make it the ideal candidate to replace heavier materials in the car to respond to the weight resuction demand within the automotive industry. In this paper, A series of compression test was carried out to find the flow stress of A6082 at 300, 400 and $500^{\circ}C$, then we tried to estimate weldability, extrusion load and effective stress of die in the aluminum extrusion process through the 3D FE simulation at non-steady state for aluminum automotive parts.

  • PDF