• Title/Summary/Keyword: 서비스 활용성

Search Result 5,482, Processing Time 0.036 seconds

A Basic Study on the Establishment of Preservation and Management for Natural Monument(No.374) Pyeongdae-ri Torreya nucifera forest of Jeju (천연기념물 제374호 제주 평대리 비자나무 숲의 보존·관리방향 설정을 위한 기초연구)

  • Lee, Won-Ho;Kim, Dong-Hyun;Kim, Jae-Ung;Oh, Hae-Sung;Choi, Byung-Ki;Lee, Jong-Sung
    • Journal of the Korean Institute of Traditional Landscape Architecture
    • /
    • v.32 no.1
    • /
    • pp.93-106
    • /
    • 2014
  • In this study, Analyze environment of location, investigation into vegetation resources, survey management status and establish to classify the management area for Natural monument No.374 Pyengdae-ri Torreya nucifera forest. The results were as follows: First, Torreya nucifera forest is concerned about influence of development caused by utilization of land changes to agricultural region. Thus, establish to preservation management plan for preservation of prototypical and should be excluded development activity to cause the change of terrain that Gotjawal in the Torreya nucifera forest is factor of base for generating species diversity. Secondly, Torreya nucifera forest summarized as 402 taxa composed 91 familly 263 genus, 353 species, 41 varieties and 8 forms. The distribution of plants for the first grade & second grade appear of endangered plant to Ministry of Environment specify. But, critically endangered in forest by changes in habitat, diseases and illegal overcatching. Therefore, when establishing forest management plan should be considered for put priority on protection. Thirdly, Torreya nucifera representing the upper layer of the vegetation structure. But, old tree oriented management and conservation strategy result in poor age structure. Furthermore, desiccation of forest on artificial management and decline in Torreya nucifera habitat on ecological succession can indicate a problem in forest. Therefore, establish plan such as regulation of population density and sapling tree proliferation for sustainable characteristics of the Torreya nucifera forest. Fourth, Appear to damaged of trails caused by use. Especially, Scoria way occurs a lot of damaged and higher than the share ratio of each section. Therefore, share ratio reduction Plan should be considered through the additional development of tourism routes rather than the replacement of Scoria. Fifth, Representing high preference of the Torreya nucifera forest tourist factor confirmed the plant elements. It is sensitive to usage pressure. And requires continuous monitoring by characteristic of Non-permanent. In addition, need an additional plan such as additional development of tourism elements and active utilizing an element of high preference. Sixth, Strength of protected should be differently accordance with importance. First grade area have to maintenance of plant population and natural habitats. Set the direction of the management. Second grade areas focus on annual regeneration of the forest. Third grade area should be utilized demonstration forest or set to the area for proliferate sapling. Fourth grade areas require the introduced of partial rest system that disturbance are often found in proper vegetation. Fifth grade area appropriate to the service area for promoting tourism by utilizing natural resources in Torreya nucifera forest. Furthermore, installation of a buffer zone in relatively low ratings area and periodic monitoring to the improvement of edge effect that adjacent areas of different class.

Performance Evaluation of Advance Warning System for Transporting Hazardous Materials (위험물 운송을 위한 조기경보시스뎀 성능평가)

  • Oh Sei-Chang;Cho Yong-Sung
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.4 no.1 s.6
    • /
    • pp.15-29
    • /
    • 2005
  • Truck Shipment Safety Information, which is a part of the development of NERIS is divided into Optimal Route Guidance System and Emergency Response System. This research is for establishing an advance warning system, which aims for preventing damages(fire, explosion, gas-escape etc.) and detecting incidents that are able to happen during transporting hazardous materials in advance through monitoring the position of moving vehicles and the state of hazardous materials in real-time. This research is peformed to confirm the practical possibility of application of the advance warning system that monitors whether the hazardous materials transport vehicles move the allowed routes, finds the time and the location of incidents of the vehicles promptly and develops the emergency system that is able to respond to the incidents as well by using the technologies of CPS, CDMA and CIS with testing the ability of performance. As the results of the test, communication accuracies are 99$\%$ in freeway, 96$\%$ in arterial, 97$\%$ in hilly sections, 99$\%$ in normal sections, 96$\%$ in local sections, 99$\%$ in urban sections and 98$\%$ in tunnels. According to those results, the system has been recorded a high success rate of communication that enough to apply to the real site. However, the weak point appeared through the testing is that the system has a limitation of communication that is caused in the rural areas and certain areas where are fewer antennas that make communication possible between on-board unit and management server. Consequently, for the practical use of this system, it is essential to develop the exclusive en-board unit for the vehicles and find the method that supplements the receiving limitation of the GPS coordinates inside tunnels. Additionally, this system can be used to regulate illegal acts automatically such as illegal negligence of hazardous materials. And the system can be applied to the study about an application scheme as a guideline for transporting hazardous materials because there is no certain management system and act of toxic substances in Korea.

  • PDF

Analysis of Sustainable Development Goals(SDGs) and 'Housing' Contents in Middle School Technology·Home Economics Textbooks (중학교 기술·가정 교과서의 '주생활' 단원 내용과 관련된 지속가능발전목표(SDGs) 분석)

  • Choi, Seong-Youn;Lee, Young-Sun;Kim, Eun-Jong;Kim, Seung-Hee;Lee, Ji-Sun;Cho, Jae-Soon
    • Journal of Korean Home Economics Education Association
    • /
    • v.31 no.1
    • /
    • pp.115-136
    • /
    • 2019
  • The purpose of this study is to analyze the contents of 'housing' unit in middle school Technology-Home Economics textbooks according to the 2015 revision curriculum based on the targets of SDGs. All contents of the ten textbooks of five publishers, such as texts, photographs/figures/tables, activity tasks, and supplementary materials were analyzed in terms of SDGs targets. The number of 'housing' contents among 4 small housing units of Technology-Home Economics book 1 & 2 varied from 64 to 97 by publishers. Beside SDGs4.7, which contains inclusive and general ESDGs, 24 targets of 10 SDGs were found to be related to the contents of 'housing' and were grouped into 15 target categories. The number of SDGs target categories related to housing contents of each small unit and total of all units differed by publishers. Each of 4 small 'housing' units from all the five publishers was related to 6~10 target categories. The contents of five book 1's were related to smaller number of target categories than those of five book 2's. They corresponded to 9 and 12 target categories, consecutively. Only SDGs' target11.1 (appropriate and safe housing and basic services) was related to all the four small units of 'housing' contents among all the five publishers. covering 43.8% of the housing contents. In conclusion, the contents of the 'housing' unit were related to broad range of SDGs targets. Further study could relate goals of teaching-learning plan to various global targets of SDGs according to the contents of 'housing' in order to accomplish ESDGs.

A Systematic Review on the Effects of Virtual reality-based Telerehabilitation for Stroke Patients (뇌졸중 환자를 위한 가상현실 기반의 원격재활 효과에 관한 체계적 고찰)

  • Lim, Young-Myoung;Lee, ji-Yong;Jo, Seong-Jun;Ahn, Ye-Seul;Yoo, Doo-Han
    • The Journal of Korean society of community based occupational therapy
    • /
    • v.7 no.1
    • /
    • pp.59-70
    • /
    • 2017
  • Objective : The purpose of this study was to examine the effect of virtual reality-based remote rehabilitation on stroke patients systematically and to look for its effect and how to apply it domestically. Methods : In order to search data, EMBASE and CINAHL database were used. Relevant research used those terms of virtual reality, telerehabilitation, and stroke. A total of 10 studies satisfying the selection criteria was analyzed according to their qualitative level, general characteristics, and PICO method. Results : Based on the selected 10 studies, virtual reality-based telerehabilitation system was applied. Sensory and motor feedback was provided with inputting visual and auditory senses through a video in the home environment, and it stimulated changes in the client's nervous system. Tools to measure the results were upper extremity function, balance and gait, activities of daily living, etc. Those virtual reality-based telerehabilitation method had an effect on upper extremity function and ability of sense of balance in all studies, and on the activities of daily living partially. Telerehabilitation service to make up environmental specificity improved satisfaction of client. That meaned the effect of the intervention to maintain the function. Conclusion : The virtual reality-based telerehabilitation system was applied to upper extremity function, sense of balance, and activities of daily living largely, and it showed that it helped to improve functions through intervention, supervision, and training of therapist in the home environment as well. This study suggests the basis and possibility of clinical application on virtual-reality based telerehabilitation. Additional research is needed to diverse virtual reality intervention methods and the effect of telerehabilitation in the future.

Development of Customer Sentiment Pattern Map for Webtoon Content Recommendation (웹툰 콘텐츠 추천을 위한 소비자 감성 패턴 맵 개발)

  • Lee, Junsik;Park, Do-Hyung
    • Journal of Intelligence and Information Systems
    • /
    • v.25 no.4
    • /
    • pp.67-88
    • /
    • 2019
  • Webtoon is a Korean-style digital comics platform that distributes comics content produced using the characteristic elements of the Internet in a form that can be consumed online. With the recent rapid growth of the webtoon industry and the exponential increase in the supply of webtoon content, the need for effective webtoon content recommendation measures is growing. Webtoons are digital content products that combine pictorial, literary and digital elements. Therefore, webtoons stimulate consumer sentiment by making readers have fun and engaging and empathizing with the situations in which webtoons are produced. In this context, it can be expected that the sentiment that webtoons evoke to consumers will serve as an important criterion for consumers' choice of webtoons. However, there is a lack of research to improve webtoons' recommendation performance by utilizing consumer sentiment. This study is aimed at developing consumer sentiment pattern maps that can support effective recommendations of webtoon content, focusing on consumer sentiments that have not been fully discussed previously. Metadata and consumer sentiments data were collected for 200 works serviced on the Korean webtoon platform 'Naver Webtoon' to conduct this study. 488 sentiment terms were collected for 127 works, excluding those that did not meet the purpose of the analysis. Next, similar or duplicate terms were combined or abstracted in accordance with the bottom-up approach. As a result, we have built webtoons specialized sentiment-index, which are reduced to a total of 63 emotive adjectives. By performing exploratory factor analysis on the constructed sentiment-index, we have derived three important dimensions for classifying webtoon types. The exploratory factor analysis was performed through the Principal Component Analysis (PCA) using varimax factor rotation. The three dimensions were named 'Immersion', 'Touch' and 'Irritant' respectively. Based on this, K-Means clustering was performed and the entire webtoons were classified into four types. Each type was named 'Snack', 'Drama', 'Irritant', and 'Romance'. For each type of webtoon, we wrote webtoon-sentiment 2-Mode network graphs and looked at the characteristics of the sentiment pattern appearing for each type. In addition, through profiling analysis, we were able to derive meaningful strategic implications for each type of webtoon. First, The 'Snack' cluster is a collection of webtoons that are fast-paced and highly entertaining. Many consumers are interested in these webtoons, but they don't rate them well. Also, consumers mostly use simple expressions of sentiment when talking about these webtoons. Webtoons belonging to 'Snack' are expected to appeal to modern people who want to consume content easily and quickly during short travel time, such as commuting time. Secondly, webtoons belonging to 'Drama' are expected to evoke realistic and everyday sentiments rather than exaggerated and light comic ones. When consumers talk about webtoons belonging to a 'Drama' cluster in online, they are found to express a variety of sentiments. It is appropriate to establish an OSMU(One source multi-use) strategy to extend these webtoons to other content such as movies and TV series. Third, the sentiment pattern map of 'Irritant' shows the sentiments that discourage customer interest by stimulating discomfort. Webtoons that evoke these sentiments are hard to get public attention. Artists should pay attention to these sentiments that cause inconvenience to consumers in creating webtoons. Finally, Webtoons belonging to 'Romance' do not evoke a variety of consumer sentiments, but they are interpreted as touching consumers. They are expected to be consumed as 'healing content' targeted at consumers with high levels of stress or mental fatigue in their lives. The results of this study are meaningful in that it identifies the applicability of consumer sentiment in the areas of recommendation and classification of webtoons, and provides guidelines to help members of webtoons' ecosystem better understand consumers and formulate strategies.

The Effects of Performance of Public Health Services and Personal Characteristics on Community Image of Public Hospitals (공공보건의료사업 수행과 주민특성이 공공병원 이미지에 미치는 영향)

  • Sim, In Ok;Hwang, Eun Jeong
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.16 no.9
    • /
    • pp.6089-6098
    • /
    • 2015
  • This study purposes to identify the effects of performance of public health services (PHS) and personal characteristics on community image to public hospitals. The subjects of this study were 33 public hospitals and 1,789 community residents. The data of '2011 Public hospital evaluation programme' were utilized in this study. The personal characteristics consisted of nine items which were gender, age, education, occupation, monthly incomes, medical security, use experience, health state, and location type. The PHS performance consisted of five items which were number of doctors, number of nurses, total number of staff, budget per 1,000 community residents, and amount of activities per 1,000 community residents. The cronbach's alpha of community image instrument was 0.916. As the results of logistic regression, the significant variables of community image, were age (OR=0.34, 95% CI=0.19-0.60), education (OR=3.03, 95% CI=1.60-5.76), use experience (OR=0.57, 95% CI=0.40-0.81), health state (OR=0.69 95% CI=0.49-0.96), location type (OR=2.10, 95% CI=1.11-3.99), and amount of activities per 1,000 community residents (OR=0.58, 95% CI=0.35-0.96). Community image is very important to public hospitals. The workforce and budget related PHS were significantly demanded to improve community image. The Central and Local government should support to public hospitals to perform PHS effectively.

Detection Ability of Occlusion Object in Deep Learning Algorithm depending on Image Qualities (영상품질별 학습기반 알고리즘 폐색영역 객체 검출 능력 분석)

  • LEE, Jeong-Min;HAM, Geon-Woo;BAE, Kyoung-Ho;PARK, Hong-Ki
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.22 no.3
    • /
    • pp.82-98
    • /
    • 2019
  • The importance of spatial information is rapidly rising. In particular, 3D spatial information construction and modeling for Real World Objects, such as smart cities and digital twins, has become an important core technology. The constructed 3D spatial information is used in various fields such as land management, landscape analysis, environment and welfare service. Three-dimensional modeling with image has the hig visibility and reality of objects by generating texturing. However, some texturing might have occlusion area inevitably generated due to physical deposits such as roadside trees, adjacent objects, vehicles, banners, etc. at the time of acquiring image Such occlusion area is a major cause of the deterioration of reality and accuracy of the constructed 3D modeling. Various studies have been conducted to solve the occlusion area. Recently the researches of deep learning algorithm have been conducted for detecting and resolving the occlusion area. For deep learning algorithm, sufficient training data is required, and the collected training data quality directly affects the performance and the result of the deep learning. Therefore, this study analyzed the ability of detecting the occlusion area of the image using various image quality to verify the performance and the result of deep learning according to the quality of the learning data. An image containing an object that causes occlusion is generated for each artificial and quantified image quality and applied to the implemented deep learning algorithm. The study found that the image quality for adjusting brightness was lower at 0.56 detection ratio for brighter images and that the image quality for pixel size and artificial noise control decreased rapidly from images adjusted from the main image to the middle level. In the F-measure performance evaluation method, the change in noise-controlled image resolution was the highest at 0.53 points. The ability to detect occlusion zones by image quality will be used as a valuable criterion for actual application of deep learning in the future. In the acquiring image, it is expected to contribute a lot to the practical application of deep learning by providing a certain level of image acquisition.

Application of Digital Content Technology for Veterans Diplomacy (디지털 콘텐츠 기술을 활용한 보훈외교의 발전 방향)

  • So, Byungsoo;Park, Hyungi
    • Journal of Public Diplomacy
    • /
    • v.3 no.2
    • /
    • pp.35-52
    • /
    • 2023
  • Korea has developed as an influential country over Asia and all over the world based on remarkable economic development. And the background of this development was possible due to the existence of those who sacrificed precious lives and contributed to the nation's existence in the past crisis. Every year, Korea holds an annual commemorative event with people of national merit, Korean War veterans, and their families, expressing gratitude for sacrifices and contributions at home and abroad, and providing economic support. The tragedy of the Korean War and the pro-democracy movement in Korea over the past half century will one day become a history of the distant past over time. As generations change and the purpose and method of exchange by region change, the tragic situation that occurred earlier and the way people sacrificed for the country are expected to be different from before. In particular, it is true that the number of Korean War veterans and their families is gradually decreasing as they are now old. In addition, due to the outbreak of global infectious diseases such as COVID-19, it is difficult to plan and conduct face to face events as well as before. Currently, Korea's digital technology is introducing various methods. 5G communication networks, smart-phones, tablet PCs, and smart devices that can experience virtual reality are already used in our real lives. Business meetings are held in a metaverse environment, and concerts by famous singers are held in an online environment. Artificial intelligence technology has also been introduced in the field of human resource recruitment and customer response services, improving the work efficiency of companies. And it seems that this technology can be used in the field of veterans. In particular, there is a metaverse technology that can vividly show the situation during the Korean War, and a way to digitalize the voices and facial expressions of currently surviving veterans to convey their memories and lessons to future generations in the long run. If this digital technology method is realized on an online platform to hold a veterans' celebration event, veterans and their families on the other side of the world will be able to participate in the event more conveniently.

From a Defecation Alert System to a Smart Bottle: Understanding Lean Startup Methodology from the Case of Startup "L" (배변알리미에서 스마트바틀 출시까지: 스타트업 L사 사례로 본 린 스타트업 실천방안)

  • Sunkyung Park;Ju-Young Park
    • Asia-Pacific Journal of Business Venturing and Entrepreneurship
    • /
    • v.18 no.5
    • /
    • pp.91-107
    • /
    • 2023
  • Lean startup is a concept that combines the words "lean," meaning an efficient way of running a business, and "startup," meaning a new business. It is often cited as a strategy for minimizing failure in early-stage businesses, especially in software-based startups. By scrutinizing the case of a startup L, this study suggests that lean startup methodology(LSM) can be useful for hardware and manufacturing companies and identifies ways for early startups to successfully implement LSM. To this end, the study explained the core of LSM including the concepts of hypothesis-driven approach, BML feedback loop, minimum viable product(MVP), and pivot. Five criteria to evaluate the successful implementation of LSM were derived from the core concepts and applied to evaluate the case of startup L . The early startup L pivoted its main business model from defecation alert system for patients with limited mobility to one for infants or toddlers, and finally to a smart bottle for infants. In developing the former two products, analyzed from LSM's perspective, company L neither established a specific customer value proposition for its startup idea and nor verified it through MVP experiment, thus failed to create a BML feedback loop. However, through two rounds of pivots, startup L discovered new target customers and customer needs, and was able to establish a successful business model by repeatedly experimenting with MVPs with minimal effort and time. In other words, Company L's case shows that it is essential to go through the customer-market validation stage at the beginning of the business, and that it should be done through an MVP method that does not waste the startup's time and resources. It also shows that it is necessary to abandon and pivot a product or service that customers do not want, even if it is technically superior and functionally complete. Lastly, the study proves that the lean startup methodology is not limited to the software industry, but can also be applied to technology-based hardware industry. The findings of this study can be used as guidelines and methodologies for early-stage companies to minimize failures and to accelerate the process of establishing a business model, scaling up, and going global.

  • PDF

Business Application of Convolutional Neural Networks for Apparel Classification Using Runway Image (합성곱 신경망의 비지니스 응용: 런웨이 이미지를 사용한 의류 분류를 중심으로)

  • Seo, Yian;Shin, Kyung-shik
    • Journal of Intelligence and Information Systems
    • /
    • v.24 no.3
    • /
    • pp.1-19
    • /
    • 2018
  • Large amount of data is now available for research and business sectors to extract knowledge from it. This data can be in the form of unstructured data such as audio, text, and image data and can be analyzed by deep learning methodology. Deep learning is now widely used for various estimation, classification, and prediction problems. Especially, fashion business adopts deep learning techniques for apparel recognition, apparel search and retrieval engine, and automatic product recommendation. The core model of these applications is the image classification using Convolutional Neural Networks (CNN). CNN is made up of neurons which learn parameters such as weights while inputs come through and reach outputs. CNN has layer structure which is best suited for image classification as it is comprised of convolutional layer for generating feature maps, pooling layer for reducing the dimensionality of feature maps, and fully-connected layer for classifying the extracted features. However, most of the classification models have been trained using online product image, which is taken under controlled situation such as apparel image itself or professional model wearing apparel. This image may not be an effective way to train the classification model considering the situation when one might want to classify street fashion image or walking image, which is taken in uncontrolled situation and involves people's movement and unexpected pose. Therefore, we propose to train the model with runway apparel image dataset which captures mobility. This will allow the classification model to be trained with far more variable data and enhance the adaptation with diverse query image. To achieve both convergence and generalization of the model, we apply Transfer Learning on our training network. As Transfer Learning in CNN is composed of pre-training and fine-tuning stages, we divide the training step into two. First, we pre-train our architecture with large-scale dataset, ImageNet dataset, which consists of 1.2 million images with 1000 categories including animals, plants, activities, materials, instrumentations, scenes, and foods. We use GoogLeNet for our main architecture as it has achieved great accuracy with efficiency in ImageNet Large Scale Visual Recognition Challenge (ILSVRC). Second, we fine-tune the network with our own runway image dataset. For the runway image dataset, we could not find any previously and publicly made dataset, so we collect the dataset from Google Image Search attaining 2426 images of 32 major fashion brands including Anna Molinari, Balenciaga, Balmain, Brioni, Burberry, Celine, Chanel, Chloe, Christian Dior, Cividini, Dolce and Gabbana, Emilio Pucci, Ermenegildo, Fendi, Giuliana Teso, Gucci, Issey Miyake, Kenzo, Leonard, Louis Vuitton, Marc Jacobs, Marni, Max Mara, Missoni, Moschino, Ralph Lauren, Roberto Cavalli, Sonia Rykiel, Stella McCartney, Valentino, Versace, and Yve Saint Laurent. We perform 10-folded experiments to consider the random generation of training data, and our proposed model has achieved accuracy of 67.2% on final test. Our research suggests several advantages over previous related studies as to our best knowledge, there haven't been any previous studies which trained the network for apparel image classification based on runway image dataset. We suggest the idea of training model with image capturing all the possible postures, which is denoted as mobility, by using our own runway apparel image dataset. Moreover, by applying Transfer Learning and using checkpoint and parameters provided by Tensorflow Slim, we could save time spent on training the classification model as taking 6 minutes per experiment to train the classifier. This model can be used in many business applications where the query image can be runway image, product image, or street fashion image. To be specific, runway query image can be used for mobile application service during fashion week to facilitate brand search, street style query image can be classified during fashion editorial task to classify and label the brand or style, and website query image can be processed by e-commerce multi-complex service providing item information or recommending similar item.