• Title/Summary/Keyword: 생육관리모델

Search Result 66, Processing Time 0.033 seconds

Analysis of the growth environment and fruiting body quality of Pleurotus eryngii cultivated by Smart Farming (큰느타리(새송이)버섯 스마트팜 재배를 통한 생육환경 분석 및 자실체 품질 특성)

  • Kim, Kil-Ja;Kim, Da-Mi;An, Ho-Sub;Choi, Jin-Kyung;Kim, Seon-Gon
    • Journal of Mushroom
    • /
    • v.17 no.4
    • /
    • pp.211-217
    • /
    • 2019
  • Currently, cultivation of mushrooms using the Information and Communication Technology (ICT)-based smart farming technique is increasing rapidly. The main environmental factors for growth of mushrooms are temperature, humidity, carbon dioxide (CO2), and light. Among all the mentioned factors, currently, only temperature has been maintained under automatic control. However, humidity and ventilation are controlled using a timer, based on technical experience.Therefore, in this study, a Pleurotus eryngii first-generation smart farm model was set up that can automatically control temperature, humidity, and ventilation. After installing the environmental control system and the monitoring device, the environmental condition of the mushroom cultivation room and the growth of the fruiting bodies were studied. The data thus obtained was compared to that obtained using the conventional cultivation method.In farm A, the temperature during the primordia formation stage was about 17℃, and was maintained at approximately 16℃ during the fruiting stage. The humidity was initially maintained at 95%, and the farm was not humidified after the primordia formation stage. There was no sensor for CO2 management, and the system was ventilated as required by observing the shape of the pileus and the stipe. It was observed that, the concentration of CO2 was between 700 and 2,500 ppm during the growth period. The average weight of the mushrooms produced in farm A was 125 g, and the quality was between that of the premium and the first grade.In farm B. The CO2 sensor was in use for measurement purposes only; the system was ventilated as required by observing the shape of the pileus and the stipe. During the growth period, the CO2 concentration was observed to be between 640 and 4,500 ppm. The average weight of the mushrooms produced in farm B was 102 g.These results indicate that the quality of the king oyster mushroom is determined by the environmental conditions, especially by the concentration of CO2. Thus, the data obtained in this study can be used as an optimal smart farm model, where, by improving the environmental control method of farm A, better quality mushrooms were obtained.

Analysis of Contribution of Climate and Cultivation Management Variables Affecting Orchardgrass Production (오차드그라스의 생산량에 영향을 미치는 기후 및 재배관리의 기여도 분석)

  • Moonju Kim;Ji Yung Kim;Mu-Hwan Jo;Kyungil Sung
    • Journal of The Korean Society of Grassland and Forage Science
    • /
    • v.43 no.1
    • /
    • pp.1-10
    • /
    • 2023
  • This study aimed to confirm the importance ratio of climate and management variables on production of orchardgrass in Korea (1982-2014). For the climate, the mean temperature in January (MTJ, ℃), lowest temperature in January (LTJ, ℃), growing days 0 to 5 (GD 1, day), growing days 5 to 25 (GD 2, day), Summer depression days (SSD, day), rainfall days (RD, day), accumulated rainfall (AR, mm), and sunshine duration (SD, hr) were considered. For the management, the establishment period (EP, 0-6 years) and number of cutting (NC, 2nd-5th) were measured. The importance ratio on production of orchardgrass was estimated using the neural network model with the perceptron method. It was performed by SPSS 26.0 (IBM Corp., Chicago). As a result, EP was the most important variable (100%), followed by RD (82.0%), AR (79.1%), NC (69.2%), LTJ (66.2%), GD 2 (63.3%), GD 1 (61.6%), SD (58.1%), SSD (50.8%) and MTJ (41.8%). It implies that EP, RD, AR, and NC were more important than others. Since the annual rainfall in Korea is exceed the required amount for the growth and development of orchardgrass, the damage caused by heavy rainfall exceeding the appropriate level could be reduced through drainage management. It means that, when cultivating orchardgrass, factors that can be controlled were relatively important. Although it is difficult to interpret the specific effect of climates on production due to neural networking modeling, in the future, this study is expected to be useful in production prediction and damage estimation by climate change by selecting major factors.

Optimal Planting Spacing on the Basis of the Growth Condition of Landscape Trees (조경수목의 생육환경을 고려한 적정 식재간격의 연구)

  • 이옥하;이경재
    • Korean Journal of Environment and Ecology
    • /
    • v.13 no.1
    • /
    • pp.34-48
    • /
    • 1999
  • 본 연구는 주요 조경수목에 대한 생장예측모델을 추정하여 적정 식재간격을 산정하기 위해 실시하였다. 조경식재에서 많이 사용되는 9개 수종을 대상으로 수종별 30주 이상씩의 개체를 선정한 후, 상관성이 높은 측정변수 간에 회귀분석을 실시하여 생장예측모델을 추정하였다. 그리고 서울 시내 2개 아파트단지 녹지를 사례연구지로 선정하여 생육상태를 파악하고 모델과 비교하였다. 전체적으로 교목층 위주의 식재로 인해 식재밀도가 과밀하여 수관이 왜곡되고 기형적으로 생장하는 현상이 발생하고 있는 바, 수관중복률과 수관왜곡률을 분석한 결과에 의하면 현재의 식재간격이 매우 조밀한 것으로 밝혀졌다. 결론적으로 시간경과에 따른 주요 조경수종의 규격별 생장예측을 통해 목표년도별 적정 식재간격을 제안하였는데, 목표년도를 식재 후 5년으로 본다면 상록교목은 2.0m, 낙엽교목은 3.0~4.0m, 낙엽아교목은 2.0~2.5m의 식재간격이 적당하고, 식재 후 10년을 목표년도로 한다면 상록교목의 경우 3.0m, 낙엽교목은 4.0~6.0m, 낙엽교목은 2.5~3.0m의 간격을 유지하여야 한다. 한편, 본 연구의 결과와 서울시 조례기준 식재밀도를 비교하였는데, 식재후 5년이 경과한 시점에서는 0.23본/m2, 10년 경과시점에서는 0.12본/m2이 적정 식재밀도로 밝혀져 현재 0.2본/m2으로 정하고 있는 서울시 교목식재 관련 기준은 5년 정도를 목표시점으로 한다면 적절한 수준임을 알 수 있었다. 그러나 식재 후 10년이 경과하면 수관중복률이 25%를 초과하게 되므로 쾌적한 녹지환경을 유지하기 위해 반드시 적절한 관리를 실시해야 할 것으로 판단되었다.

  • PDF

Simulation of crop growth under an intercropping condition using an object oriented crop model (객체지향적 작물 모델을 활용한 간작조건에서의 작물 생육 모의)

  • Kim, Kwang Soo;Yoo, Byoung Hyun;Hyun, Shinwoo;Seo, Beom-Seok;Ban, Ho-Young;Park, Jinyu;Lee, Byun-Woo
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.20 no.2
    • /
    • pp.214-227
    • /
    • 2018
  • An object oriented crop model was developed to perform crop growth simulation taking into account complex interaction between biotic and abiotic factors in an agricultural ecosystem. A set of classes including Atmosphere class, Plant class, Soil class, and Grower class were designed to represent weather, crop, soil, and crop management, respectively. Objects, which are instance of class, were linked to construct an integrated system for crop growth simulation. In a case study, yield of corn and soybean, which was obtained at an experiment farm in Rural Development Administration from 1984 to 1986, were compared with yield simulated using the integrated system. The integrated system had relatively low error rate of corn yield, e.g., <4%, under sole and intercropping conditions. In contrast, the system had a relatively large underestimation error for above ground biomass except for grain compared with those observed for corn and soybean. For example, estimates of biomass of corn leaf and stem was 31% lower than those of observed values. Although the integrated system consisted of simple models, the system was capable of simulating crop yield under an intercropping condition. This result suggested that an existing process-based model would be used to have more realistic simulation of crop growth once it is reengineered to be compatible to the integration system, which merits further studies for crop model improvement and implementation in object oriented paradigm.

Heading date and Final Leaf Number as Affected by Sowing Date and Prediction of Heading Date Based on Leaf Appearance Models in Rice (파종기에 따른 벼의 출수기 및 최종 엽수 변화와 출엽 모델에 의한 출수기 예측)

  • 이충근;이변우;신진철;윤영환
    • Proceedings of The Korean Society of Agricultural and Forest Meteorology Conference
    • /
    • 2001.06a
    • /
    • pp.101-104
    • /
    • 2001
  • 작물 발육단계의 정확한 진단은 그 시기의 생리적 반응을 이해하고 정확하고 정밀한 생육관리를 위해서 절대적으로 필요한 요소이다. 지금까지 벼의 발육단계 예측을 위한 모델에는 GDD를 이용하는 방법(이, 1972), 한 단계의 발육을 완료하는데 걸리는 기간(t)과 이 기간중의 평균기온, 평균일장의 단순회귀 또는 중회귀를 구하는 방법(Gao et al, 1989; Yin et al, 1995; 임, 1982), 평균발육속도(1/t)를 이 기간중의 평균온도와 평균일장의 함수로 표현해서 이를 적산하여 1이 되었을 때를 발육완료일로 나타내는 방법(이, 1987; 신 등, 2000), 발육기간이 시계열자료를 모두 고려하여 함수를 이용하지 않는 non-parametric 방법(이, 1991) 등이 있다.(중략)

  • PDF

Development of a Gridded Simulation Support System for Rice Growth Based on the ORYZA2000 Model (ORYZA2000 모델에 기반한 격자형 벼 생육 모의 지원 시스템 개발)

  • Hyun, Shinwoo;Yoo, Byoung Hyun;Park, Jinyu;Kim, Kwang Soo
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.19 no.4
    • /
    • pp.270-279
    • /
    • 2017
  • Regional assessment of crop productivity using a gridded simulation approach could aid policy making and crop management. Still, little effort has been made to develop the systems that allows gridded simulations of crop growth using ORYZA 2000 model, which has been used for predicting rice yield in Korea. The objectives of this study were to develop a series of data processing modules for creating input data files, running the crop model, and aggregating output files in a region of interest using gridded data files. These modules were implemented using C++ and R to make the best use of the features provided by these programming languages. In a case study, 13000 input files in a plain text format were prepared using daily gridded weather data that had spatial resolution of 1km and 12.5 km for the period of 2001-2010. Using the text files as inputs to ORYZA2000 model, crop yield simulations were performed for each grid cell using a scenario of crop management practices. After output files were created for grid cells that represent a paddy rice field in South Korea, each output file was aggregated into an output file in the netCDF format. It was found that the spatial pattern of crop yield was relatively similar to actual distribution of yields in Korea, although there were biases of crop yield depending on regions. It seemed that those differences resulted from uncertainties incurred in input data, e.g., transplanting date, cultivar in an area, as well as weather data. Our results indicated that a set of tools developed in this study would be useful for gridded simulation of different crop models. In the further study, it would be worthwhile to take into account compatibility to a modeling interface library for integrated simulation of an agricultural ecosystem.

Development of Smart Farm Monitoring System (스마트팜 모니터링 시스템 개발)

  • Kim, Gwan-hyung
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2021.05a
    • /
    • pp.287-288
    • /
    • 2021
  • There is a growing interest in plant factories around the world, and in recent years, research on an automated management system that can grow crops even in an urban environment is in progress. The development of this management system is based on the development of ICT (Information Communications Technology) technology, and research is being conducted focusing on facilities, light sources, temperature, humidity and automation to increase the productivity of plants. Research on standardization is ongoing. In this paper, by constructing a test bed that can grow hydroponic ginseng in a container environment, we propose a model that can monitor and manage the environment for the growth process on mobile.

  • PDF

Estimation of Heading Date for Rice Cultivars Using ORYZA (v3) (ORYZA (v3) 모델을 사용한 벼 품종별 출수기 예측)

  • Hyun, Shinwoo;Kim, Kwang Soo
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.19 no.4
    • /
    • pp.246-251
    • /
    • 2017
  • Crop models have been used to predict a heading date for efficient management of fertilizer application. Recently, the ORYZA (v3) model was developed to improve the ORYZA2000 model, which has been used for simulation of rice growth in Korea. Still, little effort has been made to assess applicability of the ORYZA (v3) model to rice farms in Korea. The objective of this study was to evaluate reliability of heading dates predicted using the the ORYZA (v3) model, which would indicate applicability of the model to a decision support system for fertilizer application. Field experiments were conducted from 2015-2016 at the Rural Development Administration (RDA) to obtain rice phenology data. Shindongjin cultivar which is mid-late maturity type was grown under a conventional fertilizer management, e.g., application of fertilizer at the rate of 11 Kg N/10a. Another set of heading dates was obtained from annual reports at experiment farms operated by the National Institute of Crop Science and Agricultural Technology Centers in each province. The input files for the ORYZA (v3) model were prepared using weather and soil data collected from the Korean Meteorology Administration (KMA) and the Korean Soil Information System, respectively. Input parameters for crop management, e.g., transplanting date and planting density, were set to represent management used for the field experiment. The ORYZA (v3) model predicted heading date within 1 day for two seasons. The crop model also had a relatively small error in prediction of heading date for three ecotypes of rice cultivars at experiment farms where weather input data were obtained from a near-by weather station. Those results suggested that the ORYZA (v3) model would be useful for development of a decision support system for fertilizer application when reliable input data for weather variables become available.

A Study on the Prediction of Strawberry Production in Machine Learning Infrastructure (머신러닝 기반 시설재배 딸기 생산량 예측 연구)

  • Oh, HanByeol;Lim, JongHyun;Yang, SeungWeon;Cho, YongYun;Shin, ChangSun
    • Smart Media Journal
    • /
    • v.11 no.5
    • /
    • pp.9-16
    • /
    • 2022
  • Recently, agricultural sites are automating into digital agricultural smart farms by applying technologies such as big data and Internet of Things (IoT). These smart farms aim to increase production and improve crop quality by measuring the environment of crops, investigating and processing data. Production prediction is an important study in smart farm digital agriculture, which is a high-tech agriculture, and it is necessary to analyze environmental data using big data and further standardized research to manage the quality of growth information data. In this paper, environmental and production data collected from smart farm strawberry farms were analyzed and studied. Based on regression analysis, crop production prediction models were analyzed using Ridge Regression, LightGBM, and XGBoost. Among the three models, the optimal model was XGBoost, and R2 showed 82.5 percent explanatory power. As a result of the study, the correlation between the amount of positive fluid absorption and environmental data was confirmed, and significant results were obtained for the production prediction study. In the future, it is expected to contribute to the prevention of environmental pollution and reduction of sheep through the management of sheep by studying the amount of sheep absorption, such as information on the growing environment of crops and the ingredients of sheep.