DOI QR코드

DOI QR Code

Simulation of crop growth under an intercropping condition using an object oriented crop model

객체지향적 작물 모델을 활용한 간작조건에서의 작물 생육 모의

  • Kim, Kwang Soo (Department of Plant Science, Seoul National University) ;
  • Yoo, Byoung Hyun (Department of Plant Science, Seoul National University) ;
  • Hyun, Shinwoo (Department of Plant Science, Seoul National University) ;
  • Seo, Beom-Seok (Department of Plant Science, Seoul National University) ;
  • Ban, Ho-Young (Department of Plant Science, Seoul National University) ;
  • Park, Jinyu (Department of Plant Science, Seoul National University) ;
  • Lee, Byun-Woo (Department of Plant Science, Seoul National University)
  • 김광수 (서울대학교 식물생산과학부) ;
  • 유병현 (서울대학교 식물생산과학부) ;
  • 현신우 (서울대학교 식물생산과학부) ;
  • 서범석 (서울대학교 식물생산과학부) ;
  • 반호영 (서울대학교 식물생산과학부) ;
  • 박진유 (서울대학교 식물생산과학부) ;
  • 이변우 (서울대학교 식물생산과학부)
  • Received : 2018.05.02
  • Accepted : 2018.06.20
  • Published : 2018.06.30

Abstract

An object oriented crop model was developed to perform crop growth simulation taking into account complex interaction between biotic and abiotic factors in an agricultural ecosystem. A set of classes including Atmosphere class, Plant class, Soil class, and Grower class were designed to represent weather, crop, soil, and crop management, respectively. Objects, which are instance of class, were linked to construct an integrated system for crop growth simulation. In a case study, yield of corn and soybean, which was obtained at an experiment farm in Rural Development Administration from 1984 to 1986, were compared with yield simulated using the integrated system. The integrated system had relatively low error rate of corn yield, e.g., <4%, under sole and intercropping conditions. In contrast, the system had a relatively large underestimation error for above ground biomass except for grain compared with those observed for corn and soybean. For example, estimates of biomass of corn leaf and stem was 31% lower than those of observed values. Although the integrated system consisted of simple models, the system was capable of simulating crop yield under an intercropping condition. This result suggested that an existing process-based model would be used to have more realistic simulation of crop growth once it is reengineered to be compatible to the integration system, which merits further studies for crop model improvement and implementation in object oriented paradigm.

농업생태계의 복잡한 상호작용을 고려하여 작물생육을 모의하기 위해 객체지향형 작물모델을 개발하였다. 대기, 작물, 토양 및 재배관리를 대표하는 Atmosphere 클래스, Plant 클래스, Soil 클래스, Grower 클래스가 설계되었다. 또한, 이들 클래스들이 구현된 객체들을 하나의 시스템으로 연계하여 통합시스템을 구축하였다. 사례연구로써, 농촌진흥청 본원의 전작시험 포장에서 1985년부터 1986년까지 수행된 실험에서 얻어진 옥수수와 콩의 수량 관측자료와 통합시스템으로 모의된 결과값을 비교하였다. 단작과 간작조건에서 통합시스템으로 예측된 옥수수의 수량은 4% 이내의 낮은 오차율로 모의되었다. 이삭중을 제외한 지상부 건물중의 경우, 옥수수와 콩의 관측값보다 과소추정되는 경향이 있었다. 예를 들어, 옥수수의 경우 잎과 줄기의 생체중 모의값은 관측값에 비해 약 31% 적게 추정되었다. 옥수수가 수확된 시점에서 같이 수확이 된 콩의 경우, 옥수수 보다는 비교적 작은 과소추정 오차를 가졌다. 비록 간단한 형태의 모델들로 구성되었으나, 이러한 모델을 활용하여 복잡한 상호작용을 모의할 수 있는 통합시스템이 개발될 수 있다는 것을 보여주었다. 추후 연구에서, 보다 상세한 작물 생육 모의를 위해 기존의 과정중심의 작물 모델을 역설계하여 통합시스템을 구축하는 연구가 진행되어야 할 것으로 사료되었다.

Keywords

References

  1. Basso, B., J. T. Ritchie, F. J. Pierce, R. P. Braga, and J. W. Jones, 2001: Spatial validation of crop models for precision agriculture. Agricultural Systems 68(2), 97-112. https://doi.org/10.1016/S0308-521X(00)00063-9
  2. Bouman, B. A. M., and H. H. van Laar, 2006: Description and evaluation of the rice growth model ORYZA2000 under nitrogen-limited conditions. Agricultural Systems 87(3), 249-273. https://doi.org/10.1016/j.agsy.2004.09.011
  3. Bulatewicz, T., A. Allen, J. M. Peterson, S. Staggenborg, S. M. Welch, and D. R. Steward, 2013: The simple script wrapper for OpenMI: enabling interdisciplinary m odeling studies. Environmental Modelling & Software 39, 283-294. https://doi.org/10.1016/j.envsoft.2012.07.006
  4. Castronova, A. M., J. L. Goodall, and M. B. Ercan, 2013: Integrated modeling within a hydrologic information system: an OpenMI based approach. Environmental Modelling & Software 39, 263-273. https://doi.org/10.1016/j.envsoft.2012.02.011
  5. Chimonyo, V. G. P., A. T. Modi, and T. Mabhaudhi, 2016: Simulating yield and water use of a sorghum-cowpea intercrop using APSIM. Agricultural Water Management 177, 317-328. https://doi.org/10.1016/j.agwat.2016.08.021
  6. Gregersen, J. B., P. J. A. Gijsbers, and S. J. P. Westen, 2007: OpenMI: Open modelling interface. Journal of Hydroinformatics 9(3), 175pp. https://doi.org/10.2166/hydro.2007.023
  7. Hedley, C., 2015: The role of precision agriculture for improved nutrient management on farms. Journal of the Science of Food and Agriculture 95, 12-19. https://doi.org/10.1002/jsfa.6734
  8. Irmak, A., J. W. Jones, W. D. Batchelor, and J. O. Paz, 2001: Estimating spatially variable soil properties for application of crop models in precision farming. Transactions of the ASAE 44(5), 1343-1353.
  9. Jiang, P., M. Elag, P. Kumar, S. D. Peckham, L. Marini, and L. Rui, 2017: A service-oriented architecture for coupling web service models using the Basic Model Interface (BMI). Environmental Modelling & Software 92, 107-118. https://doi.org/10.1016/j.envsoft.2017.01.021
  10. Jones, J. W., G. Hoogenboom, C. H. Porter, K. J. Boote, W. D. Batchelor, L. C. Hunt, P. W. Wilkens, U. Singh, A. J. Gijsman, and J. T. Ritchie, 2003: The DSSAT cropping system model. European Journal of Agronomy 18(3-4), 235-265. https://doi.org/10.1016/S1161-0301(02)00107-7
  11. Keating, B. A., P. S. Carberry, G. L. Hammer, M. E. Probert, M. J. Robertson, D. Holzworth, N. I. Huth, J. N. G. Hargreaves, H. Meinke, Z. Hochman, G. McLean, K. Verburg, V. Snow, J. P. Dimes, M. Silburn, E. Wang, S. Brown, K. L. Bristow, S. Asseng, S. Chapman, R. L. McCown, D. M. Freebairn, and C. J. Smith, 2003: An overview of APSIM, a model designed for farming systems simulation. European Journal of Agronomy 18(3-4), 267-288. https://doi.org/10.1016/S1161-0301(02)00108-9
  12. Kim, D. J., S. O. Kim, K. H. Moon, and J. I. Yun, 2012: An outlook on cereal grains production in South Korea based on crop growth simulation under the RCP8.5 climate condition. Korean Journal of Agricultural and Forest Meteorology 14(3), 132-141. (in Korean with English abstract) https://doi.org/10.5532/KJAFM.2012.14.3.132
  13. Kim, D. J., J. H. Roh, J. G. Kim, and J. I. Yun, 2013: The Influence of shifting planting date on cereal grains production under the projected climate change. Korean Journal of Agricultural and Forest Meteorology 15(1), 26-39. https://doi.org/10.5532/KJAFM.2013.15.1.026
  14. Kim, K. S., H. Kim, B. Y. Lee, C. K. Lee, and J. Kim. 2015: Requirement analysis of a system to predict crop yield under climate change. Korean Journal of Agricultural and Forest Meteorology 17(1), 1-14. https://doi.org/10.5532/KJAFM.2015.17.1.1
  15. Kim, J., W. Sang, P. Shin, H. Cho, M. Seo, B. Yoo, and K. S. Kim, 2015: Evaluation of regional climate scenario data for impact assessment of climate change on rice productivity in Korea. Journal of Crop Science and Biotechnology 18(4), 257-264. https://doi.org/10.1007/s12892-015-0103-z
  16. Kropff, M. J., and C. J. T. Spitters, 1991: A simple model of crop loss by weed competition from early observations on relative leaf area of the weeds. Weed Research 31(2), 97-105. https://doi.org/10.1111/j.1365-3180.1991.tb01748.x
  17. Lee, C. K., J. Kim, J. Shon, W. Yang, Y. H. Yoon, K. J. Choi, and K. S. Kim, 2012: Impacts of climate change on rice production and adaptation method in Korea as evaluated by simulation study. Korean Journal of Agricultural and Forest Meteorology 14(4), 207-221. (in Korean with English abstract) https://doi.org/10.5532/KJAFM.2012.14.4.207
  18. Lee, C.-K., J. Kim, and K. S. Kim, 2015: Development and application of a weather data service client for preparation of weather input files to a crop model. Computers and Electronics in Agriculture 114, 237-246. https://doi.org/10.1016/j.compag.2015.03.021
  19. Lee, S. Y., C. K. Hong, H. B. Lee, D. Y. Kim, S. K. Ha, S. K. Han, B. L. Huh, and S. B. Kim, 1987: Intercropping with soybean and cowpea for increasing feed value of corn stover. Journal of Korean Society of Crop Science 32(2), 144-150. (in Korean with English abstract)
  20. Li, C., S. Frolking, and R. Harriss, 1994: Modeling carbon biogeochemistry in agricultural soils. Global Biogeochemical Cycles 8(3), 237-254. https://doi.org/10.1029/94GB00767
  21. Lobov, A., J. L. M. Lastra, and R. Tuokko, 2005: Application of UML in plant modeling for model-based verification: UML translation to TNCES. 3rd IEEE International Conference on Industrial Informatics(INDIN), Perth, WA, Australia, 495-501.
  22. McCown, R. L., G. L. Hammer, J. N. G. Hargreaves, D. P. Holzworth, and D. M. Freebairn, 1996: APSIM: a novel software system for model development, model testing and simulation in agricultural systems research. Agricultural Systems 50(3), 255-271. https://doi.org/10.1016/0308-521X(94)00055-V
  23. Monteith, J. L., 1965: Light distribution and photosynthesis in field crops. Annals of Botany 29(1), 17-37. https://doi.org/10.1093/oxfordjournals.aob.a083934
  24. Moore, R. V., and C. I. Tindall, 2005: An overview of the open modelling interface and environment (the OpenMI). Environmental Science & Policy 8(3), 279-286. https://doi.org/10.1016/j.envsci.2005.03.009
  25. Myers, T. S., I. Atkinson, and R. Johnstone, 2010: Supporting coral reef ecosystems research through modelling a reusable ontology framework. Applied Artificial Intelligence 24, 77-101. https://doi.org/10.1080/08839510903448676
  26. Peckham, S. D., E. W. H. Hutton, and B. Norris, 2013: A component-based approach to integrated modeling in the geosciences: The design of CSDMS. Computers & Geosciences 53, 3-12. https://doi.org/10.1016/j.cageo.2012.04.002
  27. Raes, D., P. Steduto, T. C. Hsiao, and E. Fereres, 2017: AquaCrop, Version 6.0. Reference Manual. FAO, Land and Water Division, Rome, Italy.
  28. Steduto, P., T. C. Hsiao, D. Raes, and E. Fereres, 2009: AquaCrop- The FAO Crop Model to Simulate Yield Response to Water: I. Concepts and Underlying Principles. Agronomy Journal 101(3), 426-437. https://doi.org/10.2134/agronj2008.0139s
  29. Sui, D. Z., and R. C. Maggio, 1999: Integrating GIS with hydrological modeling: practices, problems, and prospects. Computers, Environment and Urban Systems 23(1), 33-51. https://doi.org/10.1016/S0198-9715(98)00052-0
  30. Thorp, K. R., J. W. White, C. H. Porter, G. Hoogenboom, G. S. Nearing, and A. N. French, 2012: Methodology to evaluate the performance of simulation models for alternative compiler and operating system configurations. Computers and Electronics in Agriculture 81, 62-71. https://doi.org/10.1016/j.compag.2011.11.008
  31. Tsubo, M., S. Walker, and H. O. Ogindo, 2005: A simulation model of cereal-legume intercropping systems for semi-arid regions. Field Crops Research 93(1), 10-22. https://doi.org/10.1016/j.fcr.2004.09.002
  32. Volk, M., J. Hirschfeld, A. Dehnhardt, G. Schmidt, C. Bohn, S. Liersch, and P. W. Gassman, 2008: Integrated ecological-economic modelling of water pollution abatement management options in the Upper Ems River Basin. Ecological Economics 66(1), 66-76.
  33. White, J. W., G. Hoogenboom, B. A. Kimball, and G. W. Wall, 2011: Methodologies for simulating impacts of climate change on crop production. Field Crops Research 124(3), 357-368. https://doi.org/10.1016/j.fcr.2011.07.001
  34. Woli, P., J. W. Jones, K. T. Ingram, and C. W. Fraisse, 2012: Agricultural reference index for drought (ARID). Agronomy Journal 104, 287-300. https://doi.org/10.2134/agronj2011.0286
  35. Whish, J. P. M., N. I. Herrmann, N. A. White, A. D. Moore, and D. J. Kriticos, 2015: Integrating pest population models with biophysical crop models to better represent the farming system. Environmental Modelling & Software 72, 418-425. https://doi.org/10.1016/j.envsoft.2014.10.010
  36. Zhang, X., J. H. Lee, Y. Abawi, Y. H. Kim, D. McClymont, and H. D. Kim, 2007: Testing the simulation capability of APSIM-ORYZA under different levels of nitrogen fertiliser and transplanting time regimes in Korea. Animal Production Science 47(12), 1446-1454. https://doi.org/10.1071/EA05363
  37. Zhang, L., W. van der Werf, L. Bastiaans, S. Zhang, B. Li, J. H. J. Spiertz, 2008: Light interception and utilization in relay intercrops of wheat and cotton. Field Crops Research 107(1), 29-42. https://doi.org/10.1016/j.fcr.2007.12.014