단일 핀-관열교환기와 관련된 열역학적 최적설계법을 기준하여 핀-관열교환기의 엔트로피 생성율을 조사하였다. 엔트로피 생성율(비가역성)해석법을 사용하여 최적설계조건을 구하였고 설계조건의 변화에 따른 총엔트로피 생성율과 핀의 길이, 관의 안지름과 바깥지름 및 핀간거리를 조사하였다. 이 연구의 결과에 따르면 바깥지름이 클수록 최적핀간거리와 핀높이는 커지고 엔트로피 생성율과 최적안지름은 작아진다. 또한 핀 두께를 증가시키면 계의 엔트로피 생성율과 최적핀간거리는 증가하고 핀높이를 증가시키면 엔트로피 생성율과 최적바깥지름은 증가한다.
이 논문에서는 역가우스분포의 적합을 위한 변형된 엔트로피 기반 검정을 제시한다. 이 검정은 자료생성분포와 역가우스분포의 엔트로피 차이에 기초를 두고 있으며 검정통계량은 엔트로피 차이의 추정량을 사용한다. 엔트로피 차이의 추정량은 자료생성분포에 대한 엔트로피 추정량으로 Vasicek의 표본엔트로피와 역가우스분포에 대한 엔트로피 추정량로 균일최소분산불편추정량을 사용하여 얻는다. 모의실험을 통해 얻은 표본크기와 윈도크기에 따른 검정통계량의 기각값들을 표의 형태로 제공한다. 제안한 검정의 검정력 알아보기 위해 여러 대립분포와 표본크기에 대해서 모의실험을 수행하고 기존의 엔트로피 기반 검정과 비교한다.
암호 알고리즘 출력문에 대한 난수성 검정들은 평문과 암호문 식별에 중요한 역할을 하고 있다. 실제로, 난수열의 생성자는 비밀키의 생성자와 같은 많은 암호체계에서 사용되고 있으며, 이때 사용되고 있는 난수열은 모의 난수라고 한다. 따라서, 이진수열에 대한 난수성을 검정하는 통계적 검정방법이나 다른 이론적 기준이 필요하다. 본 논문에서는 모의난수열이 갖고 있는 난수성 판정에 관하여 universal 엔트로피 검정방법과 근사 엔트로피 검정방법을 이용하며, 위의 두 방법에 대한 각각의 이론적인 배경과 모의실험을 통한 판정기준을 제공한다.
본 연구에서는 엔트로피 이론을 사용하여 ICA(Independent Component Analysis) 점수함수를 생성하는 새로운 밀도추정자(Density Estimator)를 제안한다. 원 신호에 대한 밀도함수의 추정은 적당한 점수함수를 생성하기 위해 필요하고, 미분 가능한 밀도함수인 커널을 이용한 밀도추정법(Kernel Density Estimation)을 이용하여 점수함수를 생성하였다. 보다 빠른 점수함수의 생성을 위해서 식의 형태를 convolution 형태로 표현하였으며, ICA 학습을 위해서 결합엔트로피를 최대화(Joint Entropy Maximization)하는 방향으로 커널의 폭을 학습하였다. 이를 위해서 기울기 강하법(Gradient descent method)를 사용하였으며, 이러한 제약 사항은 새로운 밀도 추정자를 설계하기 위한 기본적인 개념을 나타낸다. 실험결과, 커널의 폭을 담당하는 smoothing parameters들이 일정한 값으로 학습함을 알 수 있었다.
결정 트리(Decision Tree)는 주어진 데이터의 경향을 학습하는 데 사용되는 대표적인 방식이다. 이것은 주어진 데이터를 구조화하기 위하여 데이터의 속성과 정보의 엔트로피에 기반을 둔 정보획득량을 이용한다. 본 논문에서는 유비쿼터스 환경에서 사용자 프로파일 정보처럼 시간에 따라 그 경향이 변하는 데이터에 유용하게 적용할 수 있는 시간 가중치 엔트로피를 정의한다. 그리고 ID3 알고리즘을 기반으로 새롭게 제안하는 시간 가중치 엔트로피를 이용하는 향상된 ID3 알고리즘을 쓰고 사용자의 경향을 분석한다. 본 논문에서 제안하는 엔트로피를 이용하는 방식은 데이터들의 시간에 관한 영향을 고려해서 기준방식보다 분석결과가 더욱 유리하다. 두 방식의 비교 테스트 결과를 보면 시간 가중치 엔트로피를 이용하는 알고리즘은 기존의 ID3 알고리즘보다 구성된 트리의 구조가 매우 간단하고 유리하다.
다양한 장비의 인터넷 연결을 지향하고 있는 사물인터넷시대에서 암호기술의 사용을 위해 암호학적으로 안전한 난수생성은 중요 요구사항이다. 특히, 생성된 난수의 안전성과 연관된 엔트로피 원은 예측하기 어려운 잡음원을 위해 부가적인 하드웨어 로직을 사용하기도 한다. 비록 성능 측면에서 좋은 결과를 나타낼 수 있으나, 부가적인 리소스의 사용에 기인한 추가적인 전력 소비 및 면적문제 때문에 기존 자원을 최대한 활용하는 엔트로피 수집방법이 요구된다. 본 논문에서 제시하는 엔트로피 원은 멀티쓰레드 프로그램을 지원하는 환경에서 부가적인 장치 없이 공통적으로 사용 가능하므로 암호기술 구현에 있어 경량화의 어려움을 완화시킬 수 있다. 또한, 제안하는 엔트로피 원이 NIST SP 800-90B에서 제시한 난수발생기를 위한 엔트로피 입력원 테스트에서 높은 보안강도를 갖는 것으로 평가 되었다.
본 연구의 목적은 예혼합방식의 버너 앞에 소형 열교환기를 설치한 후 당량비를 변화시킬 때 NOx와 CO의 배출특성을 검토하고 열교환기 유용도와 엔트로피 생성수를 실험결과를 바탕으로 계산한 것이다. 실험결과 당량비가 증가할수록 화염온도가 높아지면서 열전달율은 상승한다. 배기가스 오염물질량과 유용도를 고려할 경우 본 실험범위에서의 적정 운전당량비는 0.75이다. 유용도를 증가시키고 엔트로피 생성량을 줄이기 위해서는 연소가스의 열전달량을 증가시켜야 하며 따라서 열교환기 면적을 증가시키는 것이 필요하다고 판단된다.
본 논문에서는 하드웨어의 제한된 자원을 이용하여 HEVC 코덱을 구현할 때 DCT 와 엔트로피 부호화를 사용하지 않고 율 및 왜곡값을 예측하여 고효율의 부호화를 수행하는 방법에 대하여 제안한다. HEVC 는 기존의 부호화기에 비하여 계층적 부호화 구조와 함께 큰 블록 크기를 갖는 DCT 와 엔트로피 부호화를 반복적으로 수행하기 때문에 하드웨어 구현 시 그 복잡도가 매우 크게 증가한다. 먼저 DCT 는 하다마드변환 행렬과 또 다른 정규 직교 변환 행렬의 곱으로 표현될 수 있는 성질을 이용하여 부호화 변환 시 생성된 하드마드변환 행렬에 저복잡도의 정규 직교 변환 행렬을 곱하여 DCT 변환 계수를 생성한 후 변환 및 양자화를 수행한다. 왜곡값의 경우, 이 때 생성된 양자화 계수와 변환 계수 간의 차이를 변환도메인에서 제곱합을 이용하여 계산하여 역변환을 생략함으로써 복잡도를 감소시킬 수 있다. 또한 텍스처에 대한 비트율 예측은 각 CU 블록내의 양자화 계수의 수를 더하여 계산하여 엔트로피를 수행하지 않고 예측할 수 있다. 그리고 비 텍스처에 대한 비트율 예측의 경우 움직임벡터의 비트에 대한 Pseudo CABAC 코드를 수행하여 예측할 수 있다. 이러한 저 복잡도의 텍스처 및 비텍스처 비트와 왜곡을 예측함으로써 하다마드변환만을 이용하여 부호화하였을 때에 비해 최대 33%의 비트율 감소를 얻을 수 있었다.
최대 엔트로피 모델(maximum entropy model)은 여러 가지 자연언어 문제를 학습하는데 성공적으로 적용되어 왔지만, 두 가지의 주요한 문제점을 가지고 있다. 그 첫번째 문제는 해당 언어에 대한 많은 사전 지식(prior knowledge)이 필요하다는 것이고, 두번째 문제는 계산량이 너무 많다는 것이다. 본 논문에서는 텍스트 단위화(text chunking)에 최대 엔트로피 모델을 적용하는 데 나타나는 이 문제점들을 해소하기 위해 새로운 방법을 제시한다. 사전 지식으로, 간단한 언어 모델로부터 쉽게 생성된 결정트리(decision tree)에서 자동적으로 만들어진 규칙을 사용한다. 따라서, 제시된 방법에서의 최대 엔트로피 모델은 결정트리를 보강하는 방법으로 간주될 수 있다. 계산론적 복잡도를 줄이기 위해서, 최대 엔트로피 모델을 학습할 때 일종의 능동 학습(active learning) 방법을 사용한다. 전체 학습 데이터가 아닌 일부분만을 사용함으로써 계산 비용은 크게 줄어 들 수 있다. 실험 결과, 제시된 방법으로 결정트리의 오류의 수가 반으로 줄었다. 대부분의 자연언어 데이터가 매우 불균형을 이루므로, 학습된 모델을 부스팅(boosting)으로 강화할 수 있다. 부스팅을 한 후 제시된 방법은 전문가에 의해 선택된 자질로 학습된 최대 엔트로피 모델보다 졸은 성능을 보이며 지금까지 보고된 기계 학습 알고리즘 중 가장 성능이 좋은 방법과 비슷한 성능을 보인다 텍스트 단위화가 일반적으로 전체 구문분석의 전 단계이고 이 단계에서의 오류가 다음 단계에서 복구될 수 없으므로 이 성능은 텍스트 단위화에서 매우 의미가 길다.
본 논문에서는 영상의 관심 영역을 선택추출하여 효과적으로 객체를 추출 할 수 있는 관심 영역 지도(Saliency Map) 생성 기법을 제안하였다. 제안하는 방법은 객체의 윤곽선에 초점을 맞추어 단일영상의 에지(Edge), HSV 색상 모델의 H(Hue)성분, 포커스(Focus), 엔트로피(Entropy)의 네 가지 특징 정보를 이용한 각각의 특징 지도(Feature Map)를 생성하고, 생성된 특징 지도들을 중심 주변 차이(Center Surround Differences)를 이용하여 중요도 지도(conspicuity map)를 생성하게 된다. 이후 생성된 중요도 지도들을 조합함으로써 관심 영역 지도를 생성하게 된다. 제안한 기법을 이용하여 생성한 관심 영역 지도를 기존 기법의 관심 영역 지도와 비교한 결과 제안한 기법의 우수함을 알 수 있었다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.