DOI QR코드

DOI QR Code

Thermal Characteristics of Cross-flow Small Scale Heat Exchanger

소형 직교류 열교환기의 열적 특성에 관한 연구

  • Kum, Sungmin (School of Mechanical and Automotive Engineering, Halla University) ;
  • Yu, Byeonghun (School of Mechanical Engineering, Inha University) ;
  • Rhee, Kwan-Seok (Division of Mechanical and Automotive, Kongju National University) ;
  • Lee, Seungro (School of Mechanical Engineering, Inha University)
  • 금성민 (한라대학교 기계자동차공학부) ;
  • 유병훈 (인하대학교 기계공학과) ;
  • 이관석 (공주대학교 기계자동차공학부) ;
  • 이승로 (인하대학교 기계공학과)
  • Received : 2013.01.29
  • Accepted : 2013.03.07
  • Published : 2013.03.31

Abstract

This study was experimentally investigated NOx and CO emissions characteristics with various equivalence ratios using premixed type of burner installed small heat exchanger. The effectiveness of heat exchanger and the entropy generation number were also calculated. As results, the heat transfer rate increases with increasing equivalence ratio due to increase the flame temperature. According to the emission characteristics and the effectiveness, the optimal operating equivalence ratio is 0.75 in the range of this experiment. Consequently, the area of the heat exchanger should be increased to reduce the entropy generation number and to increase the effectiveness.

본 연구의 목적은 예혼합방식의 버너 앞에 소형 열교환기를 설치한 후 당량비를 변화시킬 때 NOx와 CO의 배출특성을 검토하고 열교환기 유용도와 엔트로피 생성수를 실험결과를 바탕으로 계산한 것이다. 실험결과 당량비가 증가할수록 화염온도가 높아지면서 열전달율은 상승한다. 배기가스 오염물질량과 유용도를 고려할 경우 본 실험범위에서의 적정 운전당량비는 0.75이다. 유용도를 증가시키고 엔트로피 생성량을 줄이기 위해서는 연소가스의 열전달량을 증가시켜야 하며 따라서 열교환기 면적을 증가시키는 것이 필요하다고 판단된다.

Keywords

References

  1. Peng B, Wang QW, Zhang C, Xie GN, Luo, LQ, Chen QY, Zeng M, An experimental study of shell-and tube heat exchangers with continuous helical baffles. ASME J Heat Transfer 2007;129:1425-1431. https://doi.org/10.1115/1.2754878
  2. Pongsoi P, Pikulkajorn S, Wang CC, Wongwises S, Effect of fin pitche on the air-side performance of crimped spiral fin-and-tube heat exchangers with a multipass parallel and counter cross-flow configuration. Int J Heat and Mass Transfer 2011;54:2234-2240. https://doi.org/10.1016/j.ijheatmasstransfer.2010.12.027
  3. Eiamsa-ard S, Thianpong C, Eiamsa-ard P, Promvonge, P, Thermal characteristics in a heat exchanger tube fitted with dual twisted tape elements in tandem. Int Communications in Heat and Mass Transfer 2010;37:39-46. https://doi.org/10.1016/j.icheatmasstransfer.2009.08.010
  4. Kotcioglu I, Caliskan S, Cansiz A, Baskaya S, Second law analysis and heat transfer in a cross-flow heat exchanger with a new winglet-type vortex generator. Energy 2010;35:3686-3696. https://doi.org/10.1016/j.energy.2010.05.014
  5. Yoo, S. Y., Chung, M. H., Kim, K. H. and Lee J. M., 2005, "An Experimental Study on the Performance of plastic Plate Heat Exchanger," The Magazine of SAREK, Vol. 17, No. 2, pp. 117-124.
  6. Yoo, S. Y., Kim, J. H., Chung, M. H. and Jie, M. S., 2008, "A Study on the Performance Prediction of Paper Heat Exchanger for Exhaust Heat Recovery," The Magazine of the SAREK, Vol. 20, No. 6, pp. 372-380.
  7. Lee, H. S., Jeon, D. S., Kim, Y. L. and Kim, S. C., 2010, "Experimental Study of Evaporative Heat Transfer Characteristics of R-134a with Channel-Bending Angle in Microchannel Heat Exchangers," Trans. of the KSME(B), Vol. 34, No. 6, pp. 635-642. https://doi.org/10.3795/KSME-B.2010.34.6.635
  8. Jeon, Y. H., Kim N. J. and Kim J. B., 2005, "A Study on the Performance of a Cross-Flow Heat Exchanger by Tube Array Change," Journal of Energy Engineering, Vol 15, No. 1, pp. 28-34.
  9. Jun, Y. D., Nam, M. H., Koo, B. S. and Lee K. B., 2009, "Numerical Simulation of Heat transfer Characteristics of Tube Banks with Non-convectional Arrangement," Proceedings of the SAREK Summer Annual Conference, pp. 1129-1134.
  10. Kang, S. K., Choi, K. S. and Yoon, J. Y., 2009, "Characteristics of Combustion and Heat Transfer of Domestic Gas Boiler Equipped with 2-stage Heat Exchanger," Proceedings of the KSME Spring Annual Meeting, pp. 386-389.
  11. Kline SJ, McKlintock FA. Describing uncertainty in single sample experiments. Mechanical Engineering. 1953; 75: 3-8.
  12. Bejan, A., Entropy Generation Minimization, CRC Press, Boca Raton, FL, 1996.
  13. Bejan, A. Entropy generation through heat and fluid flow, Wiley, 1982.
  14. 박준규, 이석희, 정영식, 금성민, 이창언, 응축 가스보일러의 연소기와 열교환기의 최적화 연구. 한국에너지공학회 200년도 춘계학술발표회 논문집, 2000, pp. 201-207.