• Title/Summary/Keyword: 생성형 AI 서비스

Search Result 67, Processing Time 0.026 seconds

Can Generative AI Replace Human Managers? The Effects of Auto-generated Manager Responses on Customers (생성형 AI는 인간 관리자를 대체할 수 있는가? 자동 생성된 관리자 응답이 고객에 미치는 영향)

  • Yeeun Park;Hyunchul Ahn
    • Knowledge Management Research
    • /
    • v.24 no.4
    • /
    • pp.153-176
    • /
    • 2023
  • Generative AI, especially conversational AI like ChatGPT, has recently gained traction as a technological alternative for automating customer service. However, there is still a lack of research on whether current generative AI technologies can effectively replace traditional human managers in customer service automation, and whether they are advantageous in some situations and disadvantageous in others, depending on the conditions and environment. To answer the question, "Can generative AI replace human managers in customer service activities?", this study conducted experiments and surveys on customer online reviews of a food delivery platform. We applied the perspective of the elaboration likelihood model to generate hypotheses about whether there is a difference between positive and negative online reviews, and analyzed whether the hypotheses were supported. The analysis results indicate that for positive reviews, generative AI can effectively replace human managers. However, for negative reviews, complete replacement is challenging, and human managerial intervention is considered more desirable. The results of this study can provide valuable practical insights for organizations looking to automate customer service using generative AI.

The Use of Generative AI Technologies in Electronic Records Management and Archival Information Service (전자기록관리 업무 및 기록정보서비스에서의 생성형 AI 기술 활용)

  • Yoona Kang;Hyo-Jung Oh
    • Journal of Korean Society of Archives and Records Management
    • /
    • v.23 no.4
    • /
    • pp.179-200
    • /
    • 2023
  • Records management institutions in Korea generally face a situation where they lack the workforce to manage the vast amount of electronic records. If electronic records management tasks and archival information services can be automated and intelligentized, the workload can be reduced and the service satisfaction of users can be improved. Therefore, this study proposes to utilize "generative AI" technology in records management practice. To achieve this, the study first examined previous research that aimed to intelligently automate various tasks in the field of records management. The fundamental concepts of generative AI were subsequently outlined, and domestic cases of generative AI applications were investigated. Next, the scope of applying generative AI to the field of records management was defined, and specific utilization strategies were proposed based on this. Regarding the strategies, the effectiveness was verified by presenting results from applying commercial generative AI services or citing examples from other fields. Lastly, the benefits and implications of using generative AI technology in the field of records management, as well as limitations that must be addressed in advance, were presented. This study holds significance in that it identified tasks within the field of records management where generative AI technology can be integrated and proposed effective utilization strategies tailored to those tasks.

Development of Card News Generation Platform Using Generative AI (생성형 AI를 이용한 카드뉴스 생성 플랫폼 개발)

  • Yang Ha-yeon;Eom Chae-yeon;Lee Soo-yeon;Lee Tae-ran;Cho Young-seo
    • Annual Conference of KIPS
    • /
    • 2023.11a
    • /
    • pp.820-821
    • /
    • 2023
  • 본 프로젝트는 Azure OpenAI Service (large language models and generative AI) 를 이용하여 IT 기술 및 현황을 생성형 AI (GPT-4)를 활용한 IT 카드 뉴스 서비스로서 업계 현직자들에게 정보를 제공하는 시스템을 구현하였다. IT 카드 뉴스 서비스의 부재와 뉴스 제작의 비용 및 시간 소요의 문제를 해결하기 위해 생성형 AI 시스템을 고안하였다. 해당 서비스를 통해 IT 업계에 관심이 많은 사용자에게 정리된 뉴스를 한 번에 제공하는 효과를 가져올 것으로 예상한다.

Children's Perception of Generative AI : Focusing on Type and Attribute Classification (생성형 AI에 대한 아동들의 인식 연구 : 유형과 속성 분류를 중심으로)

  • Suyong Jang;Jisu Han;Hyorim Shin;Changhoon Oh
    • The Journal of the Convergence on Culture Technology
    • /
    • v.10 no.1
    • /
    • pp.591-601
    • /
    • 2024
  • As generative AI-based educational content and services targeting child users rapidly increase, the need for research related to children's perception of generative AI is increasing. Accordingly, this study sought to determine the type of generative AI recognized by children and whether cognitive, behavioral, and emotional properties were assigned to it. To understand this, we collected responses through workshop activities to create storybooks with children, semi-structured interviews, and drawing. As a result, children viewed generative AI as an artifact with a high cognitive level, but it was not a type of existing artifact.

The Empirical Analysis of Factors Affecting the Intention of College Students to Use Generative AI Services (대학생의 생성형 AI 서비스 이용의도에 영향을 미치는 요인에 대한 실증분석)

  • Chang, Soo-jin;Chung, Byoung-gyu
    • Journal of Venture Innovation
    • /
    • v.6 no.4
    • /
    • pp.153-170
    • /
    • 2023
  • Generative AI services, including ChatGPT, were becoming increasingly active. This study aimed to empirically analyze the factors that promoted and hindered the diffusion of such services from a consumer perspective. Accordingly, a research model was developed based on the Value-based Adoption Model (VAM) framework, addressing both benefit and sacrifice factors. Benefits identified included usefulness and enjoyment, while sacrifices were security and hallucination. The study analyzed how these factors affected the intention to use generative AI services. A survey was conducted among college students for empirical analysis, and 200 valid responses were analyzed. The analysis utilized structural equation modeling with AMOS 24. The empirical results showed that usefulness and enjoyment had a significant positive impact on perceived value, while security and hallucination had a significant negative impact. The order of influence on perceived value was usefulness, hallucination, security, and then enjoyment. Perceived value had a significant positive impact on usage intention. Moreover, perceived value was found to mediate the relationship between usefulness, enjoyment, security, hallucination, and the intention to use generative AI services. These findings expanded the research horizon academically by validating the effectiveness of generative AI services based on existing models and demonstrated the continued importance of usefulness in a practical context.

Exploring Factors to Minimize Hallucination Phenomena in Generative AI - Focusing on Consumer Emotion and Experience Analysis - (생성형AI의 환각현상 최소화를 위한 요인 탐색 연구 - 소비자의 감성·경험 분석을 중심으로-)

  • Jinho Ahn;Wookwhan Jung
    • Journal of Service Research and Studies
    • /
    • v.14 no.1
    • /
    • pp.77-90
    • /
    • 2024
  • This research aims to investigate methods of leveraging generative artificial intelligence in service sectors where consumer sentiment and experience are paramount, focusing on minimizing hallucination phenomena during usage and developing strategic services tailored to consumer sentiment and experiences. To this end, the study examined both mechanical approaches and user-generated prompts, experimenting with factors such as business item definition, provision of persona characteristics, examples and context-specific imperative verbs, and the specification of output formats and tone concepts. The research explores how generative AI can contribute to enhancing the accuracy of personalized content and user satisfaction. Moreover, these approaches play a crucial role in addressing issues related to hallucination phenomena that may arise when applying generative AI in real services, contributing to consumer service innovation through generative AI. The findings demonstrate the significant role generative AI can play in richly interpreting consumer sentiment and experiences, broadening the potential for application across various industry sectors and suggesting new directions for consumer sentiment and experience strategies beyond technological advancements. However, as this research is based on the relatively novel field of generative AI technology, there are many areas where it falls short. Future studies need to explore the generalizability of research factors and the conditional effects in more diverse industrial settings. Additionally, with the rapid advancement of AI technology, continuous research into new forms of hallucination symptoms and the development of new strategies to address them will be necessary.

A Study on Success Strategies for Generative AI Services in Mobile Environments: Analyzing User Experience Using LDA Topic Modeling Approach (모바일 환경에서의 생성형 AI 서비스 성공 전략 연구: LDA 토픽모델링을 활용한 사용자 경험 분석)

  • Soyon Kim;Ji Yeon Cho;Sang-Yeol Park;Bong Gyou Lee
    • Journal of Internet Computing and Services
    • /
    • v.25 no.4
    • /
    • pp.109-119
    • /
    • 2024
  • This study aims to contribute to the initial research on on-device AI in an environment where generative AI-based services on mobile and other on-device platforms are increasing. To derive success strategies for generative AI-based chatbot services in a mobile environment, over 200,000 actual user experience review data collected from the Google Play Store were analyzed using the LDA topic modeling technique. Interpreting the derived topics based on the Information System Success Model (ISSM), the topics such as tutoring, limitation of response, and hallucination and outdated informaiton were linked to information quality; multimodal service, quality of response, and issues of device interoperability were linked to system quality; inter-device compatibility, utility of the service, quality of premium services, and challenges in account were linked to service quality; and finally, creative collaboration was linked to net benefits. Humanization of generative AI emerged as a new experience factor not explained by the existing model. By explaining specific positive and negative experience dimensions from the user's perspective based on theory, this study suggests directions for future related research and provides strategic insights for companies to improve and supplement their services for successful business operations.

GPT-based Coding Process for Consistency in a Collaborative Environment (협업 환경에서의 일관성 확보를 위한 GPT 기반 코딩 프로세스)

  • Hanmin Jung;Jung Hoon Park;Suhyeon Yoo
    • Annual Conference of KIPS
    • /
    • 2023.05a
    • /
    • pp.437-439
    • /
    • 2023
  • 본 연구는 프로그래밍 협업 환경에서 생성형 AI인 ChatGPT-4를 활용한 코딩 프로세스를 제안한다. 일관성 있는 결과를 얻기 위해 프롬프트 생성, GPT 실행, 의사코드 변환, 코드 비교, 동일 코드 생성 여부 판단, 테스트 실행, 동일 결과 생성 여부 판단, 코드 검사 및 수정의 8단계를 거친다. 팀 프로젝트와 페어 프로그래밍 등의 다양한 협업 환경에 적용 가능한 이 프로세스를 통해 생성형 AI를 효과적으로 활용할 수 있음을 보여주었다는 점에서 그 의미가 있다. 본 연구는 생성형 AI를 활용한 협업 환경에서의 코딩이 본격적으로 이루어질 것으로 예상되는 이 시점에서, 인간-AI 협업 환경에서의 코딩 효율성 및 일관성을 높일 수 있을 것으로 기대한다. 이러한 연구는 인간과 AI가 함께 작업하는 미래를 위한 기초를 마련하는 데 중요한 역할을 할 것이다.

The Impact of Generative AI's Technical Characteristics and Librarians' Personal Traits on Intention to Use Generative AI (생성형 AI의 기술적 특성과 사서의 개인적 특성이 생성형 AI 사용의도에 미치는 영향)

  • Seonghee Kim;Seung Min Lee
    • Journal of the Korean BIBLIA Society for library and Information Science
    • /
    • v.35 no.2
    • /
    • pp.109-133
    • /
    • 2024
  • This study investigated the impact of the technical characteristics of Generative AI (GAI) and librarians' personal traits on their intention to use GAI. Personalization, interaction, and context awareness were considered as technical characteristics of GAI that influence the intention to use GAI, while innovativeness and frequency of GAI use were considered as librarians' personal traits. The study targeted 187 librarians working in libraries, and 165 questionnaires were collected and analyzed. The results showed that the technical characteristics of GAI had a statistically significant impact on the intention to use GAI. Additionally, librarians' personal traits, namely innovativeness and frequency of GAI use, were also found to have a significant impact on the intention to use GAI. The findings of this study can be used as valuable information to help librarians increase their intention to use GAI and improve the quality and satisfaction of library services.

A Study on the Data Literacy Education in the Library of the Chat GPT, Generative AI Era (ChatGPT, 생성형 AI 시대 도서관의 데이터 리터러시 교육에 대한 연구)

  • Jeong-Mee Lee
    • Journal of the Korean Society for Library and Information Science
    • /
    • v.57 no.3
    • /
    • pp.303-323
    • /
    • 2023
  • The purpose of this study is to introduce this language model in the era of generative AI such as ChatGPT, and to provide direction for data literacy education components in libraries using it. To this end, the following three research questions are proposed. First, the technical features of ChatGPT-like language models are examined, and then, it is argued that data literacy education is necessary for the proper and accurate use of information by users using a service platform based on generative AI technology. Finally, for library data literacy education in the ChatGPT era, it is proposed a data literacy education scheme including seven components such as data understanding, data generation, data collection, data verification, data management, data use and sharing, and data ethics. In conclusion, since generative AI technologies such as ChatGPT are expected to have a significant impact on users' information utilization, libraries should think about the advantages, disadvantages, and problems of these technologies first, and use them as a basis for further improving library information services.