• Title/Summary/Keyword: 생성형 AI 교육

Search Result 66, Processing Time 0.03 seconds

A Study on the Current Status and Qualitative Development of AI Midjourney 2d Graphic Results (AI미드저니 2d그래픽 결과물의 현황과 질적 적용에 관한 연구)

  • Cho, Hyun Kyung
    • The Journal of the Convergence on Culture Technology
    • /
    • v.10 no.5
    • /
    • pp.803-808
    • /
    • 2024
  • As a service that creates graphic work images with AI, DALL-E2, Midjourney, Stable Diffusion, BING image generator, and Playground AI are widely used. It is that graphic also enables learner-led customized education. With this, it is worth studying detailed design customized learning materials and methods for designing efficient design in future 2D graphic work, and it is necessary to explore the areas of application. The current situation is that it is necessary to develop a design education system that can indicate the lack of AI technology through text security and questions. In this study, a successful proposal for a process that is produced through a process of creating AI design work through proxy work can be presented as a conclusion. Design, advertisement, and visual content companies are already using and adapting, and the trend is to reflect the AI graphic utilization ability and results in the portfolio along with interviews when hiring new employees. In line with this, detailed consideration and research on visual and design production methods for AI convergence between instructors and learners are currently needed. In this paper, proposals and methods for image quality production were considered in the main body and conclusions, and conclusive directions were proposed for five alternatives and methods for future applications.

A Study on College Students' Perceptions of ChatGPT (ChatGPT에 대한 대학생의 인식에 관한 연구)

  • Rhee, Jung-uk;Kim, Hee Ra;Shin, Hye Won
    • Journal of Korean Home Economics Education Association
    • /
    • v.35 no.4
    • /
    • pp.1-12
    • /
    • 2023
  • At a time when interest in the educational use of ChatGPT is increasing, it is necessary to investigate the perception of ChatGPT among college students. A survey was conducted to compare the current status of internet and interactive artificial intelligence use and perceptions of ChatGPT after using it in the following courses in Spring 2023; 'Family Life and Culture', 'Fashion and Museums', and 'Fashion in Movies' in the first semester of 2023. We also looked at comparative analysis reports and reflection diaries. Information for coursework was mainly obtained through internet searches and articles, but only 9.84% used interactive AI, showing that its application to learning is still insufficient. ChatGPT was first used in the Spring semester of 2023, and ChatGPT was mainly used among conversational AI. ChatGPT is a bit lacking in terms of information accuracy and reliability, but it is convenient because it allows students to find information while interacting easily and quickly, and the satisfaction level was high, so there was a willingness to use ChatGPT more actively in the future. Regarding the impact of ChatGPT on education, students said that it was positive that they were self-directed and that they set up a cooperative class process to verify information through group discussions and problem-solving attitudes through questions. However, problems were recognized that lowered trust, such as plagiarism, copyright, data bias, lack of up-to-date data learning, and generation of inaccurate or incorrect information, which need to be improved.

Research of intelligent rhythm service of edutainment humanoid robot (에듀테인먼트 휴머노이드 로봇의 지능적인 율동 서비스 연구)

  • Yoon, Taebok;Na, Eunsuk
    • Journal of Korea Game Society
    • /
    • v.18 no.4
    • /
    • pp.75-82
    • /
    • 2018
  • With the development of information and communication technology, various methods have been tried to provide learners with a fun educational environment through fun and interest. It is a good example to utilize technologies such as games and robots in education for edutainment and game-based learning. In this study, we propose an intelligent rhythm education system using user data collection and analysis for humanoid robot rhythm generation. To do this, the user selects music and inputs rhythm information according to the selected music. The robot utilization data of this user extracts patterns through collection and analysis. Patterns are based on frequency, and FFT similarity comparison method is applied when past data is insufficient. The proposed method is validated through experiments of kindergarten children.

D.I.Y : Block-based Programming Platform for Machine Learning Education (D.I.Y : 머신러닝 교육을 위한 블록 기반 프로그래밍 플랫폼)

  • Lee, Se-hoon;Jeong, Ji-hyun;Lee, Jin-hyeong;Jo, Cheon-woo
    • Proceedings of the Korean Society of Computer Information Conference
    • /
    • 2020.07a
    • /
    • pp.245-246
    • /
    • 2020
  • 본 논문에서는 블록형 코딩 방식을 통해 비전공자가 스스로 머신러닝의 쉽게 원리를 구현해 볼 수 있는 딥아이( D.I.Y, Deep AI Yourself) 플랫폼을 제안하였다. 딥아이는 구글의 오픈 소스 블록형 코딩 툴 개발 라이브러리인 Blockly를 기반으로 머신러닝 알고리즘을 쉽게 구현할 수 다양한 블록으로 구성되어 있다. Blockly는 CSR 기반이며 사용자가 개발한 블록 코드는 내부적으로 코드 생성기에 의해 파이썬 코드 등으로 변환되어 백엔드 서버에서 처리를 하며 결과를 사용자에게 제공한다.

  • PDF

Distributed Edge Computing for DNA-Based Intelligent Services and Applications: A Review (딥러닝을 사용하는 IoT빅데이터 인프라에 필요한 DNA 기술을 위한 분산 엣지 컴퓨팅기술 리뷰)

  • Alemayehu, Temesgen Seyoum;Cho, We-Duke
    • KIPS Transactions on Computer and Communication Systems
    • /
    • v.9 no.12
    • /
    • pp.291-306
    • /
    • 2020
  • Nowadays, Data-Network-AI (DNA)-based intelligent services and applications have become a reality to provide a new dimension of services that improve the quality of life and productivity of businesses. Artificial intelligence (AI) can enhance the value of IoT data (data collected by IoT devices). The internet of things (IoT) promotes the learning and intelligence capability of AI. To extract insights from massive volume IoT data in real-time using deep learning, processing capability needs to happen in the IoT end devices where data is generated. However, deep learning requires a significant number of computational resources that may not be available at the IoT end devices. Such problems have been addressed by transporting bulks of data from the IoT end devices to the cloud datacenters for processing. But transferring IoT big data to the cloud incurs prohibitively high transmission delay and privacy issues which are a major concern. Edge computing, where distributed computing nodes are placed close to the IoT end devices, is a viable solution to meet the high computation and low-latency requirements and to preserve the privacy of users. This paper provides a comprehensive review of the current state of leveraging deep learning within edge computing to unleash the potential of IoT big data generated from IoT end devices. We believe that the revision will have a contribution to the development of DNA-based intelligent services and applications. It describes the different distributed training and inference architectures of deep learning models across multiple nodes of the edge computing platform. It also provides the different privacy-preserving approaches of deep learning on the edge computing environment and the various application domains where deep learning on the network edge can be useful. Finally, it discusses open issues and challenges leveraging deep learning within edge computing.

Development of Machine Learning Model Use Cases for Intelligent Internet of Things Technology Education (지능형 사물인터넷 기술 교육을 위한 머신러닝 모델 활용 사례 개발)

  • Kyeong Hur
    • Journal of Practical Engineering Education
    • /
    • v.16 no.4
    • /
    • pp.449-457
    • /
    • 2024
  • AIoT, the intelligent Internet of Things, refers to a technology that collects data measured by IoT devices and applies machine learning technology to create and utilize predictive models. Existing research on AIoT technology education focused on building an educational AIoT platform and teaching how to use it. However, there was a lack of case studies that taught the process of automatically creating and utilizing machine learning models from data measured by IoT devices. In this paper, we developed a case study using a machine learning model for AIoT technology education. The case developed in this paper consists of the following steps: data collection from AIoT devices, data preprocessing, automatic creation of machine learning models, calculation of accuracy for each model, determination of valid models, and data prediction using the valid models. In this paper, we considered that sensors in AIoT devices measure different ranges of values, and presented an example of data preprocessing accordingly. In addition, we developed a case where AIoT devices automatically determine what information they can predict by automatically generating several machine learning models and determining effective models with high accuracy among these models. By applying the developed cases, a variety of educational contents using AIoT, such as prediction-based object control using AIoT, can be developed.

Interaction Between Students and Generative Artificial Intelligence in Critical Mineral Inquiry Using Chatbots (챗봇 활용 핵심광물 탐구에서 나타난 학생과 생성형 인공지능의 상호작용)

  • Sueim Chung;Jeongchan Kim;Donghee Shin
    • Journal of the Korean earth science society
    • /
    • v.44 no.6
    • /
    • pp.675-692
    • /
    • 2023
  • This study used a Chatbot, a generative artificial intelligence (AI), to analyze the interaction between the Chatbot and students when exploring critical minerals from an epistemological aspect. The results, issues to be kept in mind in the teaching and learning process using AI were discussed in terms of the role of the teacher, the goals of education, and the characteristics of knowledge. For this study, we conducted a three-session science education program using a Chatbot for 19 high school students and analyzed the reports written by the students. As a result, in terms of form, the students' questions included search-type questions and non-search-type questions, and in terms of content, in addition to various questions asking about the characteristics of the target, there were also questions requiring a judgment by combining various data. In general, students had a questioning strategy that distinguished what they should aim for and what they should avoid. The Chatbot's answer had a certain form and consisted of three parts: an introduction, a body, and a conclusion. In particular, the conclusion included commentary or opinions with opinions on the content, and in this, value judgments and the nature of science were revealed. The interaction between the Chatbot and the student was clearly evident in the process in which the student organized questions in response to the Chatbot's answers. Depending on whether they were based on the answer, independent or derived questions appeared, and depending on the direction of comprehensiveness and specificity, superordinate, subordinate, or parallel questions appeared. Students also responded to the chatbot's answers with questions that included critical thinking skills. Based on these results, we discovered that there are inherent limitations between Chatbots and students, unlike general classes where teachers and students interact. In other words, there is 'limited interaction' and the teacher's role to complement this was discussed, and the goals of learning using AI and the characteristics of the knowledge they provide were also discussed.

Utilization of Generative Artificial Intelligence Chatbot for Training in Suicide Risk Assessment of Depressed Patients: Focusing on Students at a College of Korean Medicine (우울증 환자의 자살 위험 평가의 훈련을 위한 생성형 인공지능 챗봇의 의학적 교육 활용 사례: 일개 한의과대학 학생을 중심으로)

  • Chan-Young Kwon
    • Journal of Oriental Neuropsychiatry
    • /
    • v.35 no.2
    • /
    • pp.153-162
    • /
    • 2024
  • Objectives: Among OECD countries, South Korea has been having the highest suicide rate since 2018, with 24.1 deaths per 100,000 people reported in 2020. The objectie of this study was to examine the use of generative artificial intellicence (AI) chatbots to train third-year Korean medicine (KM) students in conducting suicide risk assessments for patients with depressive disorders to train students for their clinical practice skills. Methods: The Claude 3 Sonnet model was utilized for chatbot simulations. Students performed mock consultations using standardized suicide risk assessment tools including Ask Suicide-Screening Questions (ASQ) tool and ASQ Brief Suicide Safety Assessment. Experiences and attitudes were collected through an anonymous online survey. Responses were rated on a 1~5 Likert scale. Results: Thirty-six students aged 22~30 years participated in this study. Their scores for interest and appropriateness (4.66±0.57), usefulness (4.60±0.61), and overall experience (4.63±0.60) were high. Their evaluation of the usability of artificial intelligence chatbot was also high at 4.58±0.70 points. However, their trust in chatbot responses (Q12) was lower (3.86±0.99). Common issues related to dissatisfaction included conversation disruptions due to token limits and inadequate chatbot responses. Conclusions: This is the first study investigating generative AI chatbots for suicide risk assessment training in KM education. Students reported high satisfaction, although their trust in chatbot accuracy was moderate. Technical limitations affected their experience. These preliminary findings suggest that generative AI chatbots hold promise for clinical training, particularly for education in psychiatry. However, improvements in response accuracy and conversation continuity are needed.

A Study on A Study on the University Education Plan Using ChatGPTfor University Students (ChatGPT를 활용한 대학 교육 방안 연구)

  • Hyun-ju Kim;Jinyoung Lee
    • The Journal of the Convergence on Culture Technology
    • /
    • v.10 no.1
    • /
    • pp.71-79
    • /
    • 2024
  • ChatGPT, an interactive artificial intelligence (AI) chatbot developed by Open AI in the U.S., gaining popularity with great repercussions around the world. Some academia are concerned that ChatGPT can be used by students for plagiarism, but ChatGPT is also widely used in a positive direction, such as being used to write marketing phrases or website phrases. There is also an opinion that ChatGPT could be a new future for "search," and some analysts say that the focus should be on fostering rather than excessive regulation. This study analyzed consciousness about ChatGPT for college students through a survey of their perception of ChatGPT. And, plagiarism inspection systems were prepared to establish an education support model using ChatGPT and ChatGPT. Based on this, a university education support model using ChatGPT was constructed. The education model using ChatGPT established an education model based on text, digital, and art, and then composed of detailed strategies necessary for the era of the 4th industrial revolution below it. In addition, it was configured to guide students to use ChatGPT within the permitted range by using the ChatGPT detection function provided by the plagiarism inspection system, after the instructor of the class determined the allowable range of content generated by ChatGPT according to the learning goal. By linking and utilizing ChatGPT and the plagiarism inspection system in this way, it is expected to prevent situations in which ChatGPT's excellent ability is abused in education.

A Case Study on Growth Through Coupled Process Open Innovation Open Innovation in the Faculty Startup Ecosystem: From the Perspective of Core Competency Theory (교원창업 생태계에서 결합형 오픈이노베이션을 통한 성장 사례 연구: 핵심역량이론 관점에서)

  • Changwon Yoon;Jeahong Park;Youngwoo Sohn;Youngjin Kim;Yeoungho Seo
    • Asia-Pacific Journal of Business Venturing and Entrepreneurship
    • /
    • v.19 no.3
    • /
    • pp.173-186
    • /
    • 2024
  • This paper analyzes a case of successful faculty entrepreneurship through a coupled process of open innovation in a university context, using the core competency theory perspective. Initially, the current state of faculty entrepreneurship is examined, and the effects of interdisciplinary coupled processes of open innovation are explored, focusing on the case of 'Omotion Inc.,' a startup utilizing generative AI technology for hyper-realistic 3D virtual human experiences. The research methodology involves in-depth interviews with Omotion Inc.'s co-founders, technology commercialization professionals, and experts in the field, followed by analysis based on foundational theories. Applying the core competency theory, this paper scrutinizes the process of integrating diverse expertise and technologies from various academic disciplines. The analysis goes beyond the limitations of faculty entrepreneurship confined to a single technology-centric research domain. Instead, it explores the possibilities of enhancement and value creation through coupled processes, providing practical implications for the university entrepreneurial ecosystem. The aim is to extend the traditional roles of education and research within the university, presenting a role in economic value creation beyond the boundaries of conventional faculty entrepreneurship. Through the collaboration of two faculty members, this study showcases the creation of novel technology and business models. It establishes that successful coupled processes of open innovation in faculty entrepreneurship, from a core competency theory perspective, require the entrepreneurial firm to possess (1) entrepreneurial capabilities, (2) technological capabilities, and (3) networking capabilities. The implications of this research highlight the positive impact of coupled processes of open innovation in faculty entrepreneurship, as evidenced by the Omotion Inc. case, offering guidance on entrepreneurial directions for university members preparing for entrepreneurship.

  • PDF