고해상도 위성영상을 공간정보 분야에 효과적으로 활용하기 위해서는 다중센서와 다시기 영상 데이터를 공간분석에 함께 사용하여 이들 데이터의 장점을 최대한 활용하는 것이 중요하다. 본 연구에서는 고해상도의 다중센서자료를 동시에 활용하기 위해, 영상 간 존재하는 변위량을 자동으로 추정하여 다중센서 영상 간 기하보정을 수행하는 새로운 영상정합기법을 개발하였다. 영상의 취득 방식과 방사적 특성이 다른 광학영상과 SAR 영상 간의 유사도를 효과적으로 계산하기 위하여 기하적, 방사적 전처리 과정을 수행하였고, 두 영상 간 변위량 측정은 상호정보기법을 통해 계산하였다. 또한, 변위량 측정방식의 계산 효율과 정확도 향상을 위하여 영상 피라미드 방식을 적용하여 상위 피라미드 영상부터 차례로 x, y 방향에 대한 변위량을 최적화기법을 통해 추정하였다. 이러한 과정을 피라미드의 최하부인 원영상에까지 반복적으로 수행함으로써 두 영상 간 정밀한 변위량을 추정하였으며, 수동으로 추출된 검사점을 통해 제안기법에 대한 정확도 평가를 수행한 결과, 영상간 변위량에 대한 고려만으로도 약 5m 이내 (RMSE)의 기하보정 정확도를 도출할 수 있었다.
본 논문에서는 자체발성음을 이용한 실내공간정보 획득과 이를 이용한 공간뒤틀림 및 상호간섭 제거기법을 제안하였다. 제안한 기법은 자체발성음 기반 청취자 위치추적 부분과 공간뒤틀림 및 상호간섭 제거 부분으로 구성된다. 각기 다른 아는 위치에 있는 마이크로 수신한 청취자 자체발성음의 도달지연시간차를 추정-상관기를 사용해 추정하고, 추정된 도달지연시간차를 사용해 테일러 급수 추정법으로 청취자 위치해를 구한다. 이렇게 얻은 공간정보를 바탕으로 청취자위치의 머리전달함수를 얻고, 이를 활용해 공간뒤틀림 및 상호간섭을 제거한다. 제안한 기법의 성능평가를 위해 남성 및 여성 각 50명씩, 모두 100명의 자체발성음 데이터베이스를 구축하였으며, 100명이 각각 10회씩 생성한 자체발성음을 위치추적 성능평가에 사용하였다. 평가결과 음향효과의 차이를 느끼지 못하는 평균제곱측위오차가 $0.07m^2$이내일 확률이 약 70%~90%로 나타났다. 그리고 공간뒤틀림 및 상호간섭 제거기법의 성능평가를 위해 실시한 주관평가에서 약 70%의 평가자가 음향효과가 개선된 것으로 평가하였다.
본 논문에서는 칼라 텍스쳐 영상의 MRF모델에서 새로운 파라미터 추정 방법을 제안한다. MRF모델은 RGB 칼라 면 내부의 상호작용뿐만 아니라 칼라 면들 사이의 상호작용도 고려한다. 모델에서의 파리미터들은 공간적 상호작용의 정도를 나타내며 균질한 영역들을 구별하기 위해 사용된다. 그러나 MRF모델을 기반으로 한 칼라 텍스쳐 영상 모델링은 추정해야할 파라미터 수가 너무 많다는 문제를 안고 있다. 본 논문에서는 이러한 계산상의 문제점을 해결하기 위해서 유전자 알고리즘을 사용한다. 제안한 방법의 유효성을 검증하기 위한 실험에서 칼라 자연 영상을 크기에 제한 없이 안정되게 영역 분할하였다.
융합 이미지 생성의 목적은 여러 입력 이미지에 나타난 주요 시각적인 정보를 결합시켜 하나의 보다 정보적이고 완성적인 출력 이미지를 얻는 데 있다. 현재 이러한 이미지 융합 기술은 영상 의료, 원격 감지, 로봇공학 등의 분야에서 활발하게 연구되고 있다. 본 논문에서는 최대 엔트로피에 의한 임계값 추정과 이를 바탕으로 하는 특징 벡터 추출 및 상호 정보량에 의한 특징 벡터들의 밀접한 관계를 추정하는 방식으로 융합 이미지를 생성하는 하나의 접근방식을 제안한다. 이러한 융합 이미지 생성 방식은 이미지의 전반적인 불확실성을 감소시킨다는 점에서 장점이 있고, 더 나아가서 융합되는 이미지들 가운데 블러링 이미지가 사용되는 경우에 이미지 정합이 다른 기법에 비해 보다 좋은 성능을 가진다는 점이다.
특징점 추출 기반의 지문인식 알고리즘에서 방향정보는 이진화 과정 및 지문 분류, 인증에 쓰이므로 매우 중요하다. 모델기반의 방향정보를 추정하는 방법은 영상 전체에 있는 노이즈에 대하여 매우 강건하지만, 상처와 같이 국부적으로 존재하는 노이즈 정보의 추출에는 취약하다. Sobel Operator의 경우에는 국부적인 노이즈 요소에는 민감한 특정을 보인다. 따라서 본 논문에서는 모델링된 방향정보와 Sobel Operator 의 방향 정보를 백터에 의한 상호 결합하여 영상의 방향 정보를 개선하고 노이즈 블록을 추정하는 방법을 제안한다.
본 논문에서는 마이크로폰 어레이를 통해 수신한 화자의 음성신호를 이용하여 추출된 공간정보를 통해 화자의 위치를 실시간으로 추적하는 알고리듬을 개선하고 이를 실시간으로 구현하였다. 기존의 대표적인 화자 위치 추정 알고리듬인 CPSP (Cross Power, Spectrum Phase) 함수는 상호 상관관계 (Cross Correlation)가 정규화 되어있는 형태를 갖는데, CPSP 함수의 최대값 인덱스로부터 화자의 공간정보인 TDOA(Time Difference Of Arrival)를 추출하게 된다. 그러나 CPSP함수를 이용한 공간정보 추정 알고리듬은 실내환경에서 심각하게 일어나는 반향신호에 대해서 취약한 단점을 갖고 있다. 본 논문에서 제안하는 저주파 위상 복원 알고리듬은 주파수 측면에서 반향신호가CPSP함수에 미치는 영향을 분석하여 반향으로 인하여 왜곡된 위상 성분을 복원함으로써 보다 신뢰도 있는 TDOA 추정을 가능하게 한다. 반향신호로 인한 CPSP의 위상은 저주파보다 고주파에서 심하게 왜곡되는데, 각각의 반향신호의 도달 시간을 기하학적 분포를 갖는 확률변수로 모델링하여 이를 수학적으로 증명하였다. 제안한 시스템의 성능분석을 위해 DSP를 이용한 실시간 시스템을 구현하여 기존 CPSP 알고리듬과 제안된 알고리듬을 적용한 시스템을 실제 환경에서 비교 실험을 수행한 결과 제안된 알고리듬을 적용한 시스템에서 약 15샘플 이상 TDOA 추정 오차가 줄어들고 있음을 확인하였다.
본 연구에서는 국내 주요 연약지반으로 알려진 낙동강 조간대 지역의 압밀침하 취약성 평가에 활용할 상부 점성토층의 위치별 두께 정보를 추정할 수 있는 모델을 개발하였다. 두께정보 추정을 위하여 기계학습 알고리즘인 RF (Random Forest), SVR (Support Vector Regression), GPR (Gaussian Process Regression)과 지구통계기법인 정규크리깅(Ordinary Kriging)을 이용한 4가지 공간추정 모델을 개발하고 상호 비교하였다. 모델 개발을 위하여 수집한 연구지역의 시추공 자료 4,712개 중 상부점성토층이 존재하는 2,948개의 시추공 자료를 사용하였으며, 개발된 모델들의 성능을 정량적으로 평가하기 위하여 피어슨(Pearson) 상관계수와 오차제곱평균(mean squared error)을 사용하였다. 또한, 정성적 평가를 위하여 연구지역 전역에 상부점성토층의 두께를 추정하여 점성토층의 지역별 분포 특성을 상호 비교하였다.
본 논문에서는 4 × 4 multiple input multiple output-orthogonal frequency division multiplexing (MIMO-OFDM) 시스템에서 사용 가능한 Walsh 부호화된 시간영역 훈련신호를 설계하고 채널 추정 방법을 제안하였다. 제안된 방법은 다중 경로 지연신호에 의하여 발생되는 훈련 신호간 상호간섭를 고려하면서 채널 응답 추정 공식을 closed-form으로 유도하였다. 컴퓨터 모의 실험결과 제안된 방법은 기존의 방법[9,14]에 비하여 성능이 우수하고 직교 훈련신호 설계시 대역폭을 증가시키지 않으며 4 × 4 MIMO-OFDM 시스템에서 널(null) 부반송파 존재하여도 채널 추정이 수행될 수 있음을 보였다.
본 논문은 잡음이 많이 존재할 경우 특징 보상 기법들의 불완전한 추정 방법으로 인하여 발생할 수 있는 불확실성 정보를 음성 인식의 디코딩에 반영해 줌으로써 좀 더 인식 성능을 향상시킬 수 있는 방법에 대한 연구이다. 기존의 특징 보상 기법들은 현재 시간에서의 깨끗한 특징 파라미터를 추정하는 단일점 추정 기법들이 대부분이다. 하지만 낮은 SNR 환경에서의 잘못된 추정 파라미터들이 음성 인식 엔진의 입력으로 사용될 경우 성능이 저하되기 때문에 추정된 파라미터의 불확실성 정보를 이용하여 디코딩을 해주면 추정 오류를 보완해줄 수 있다. 본 논문에서는 대표적인 Aurora-2 DB를 활용하여 적용된 기법의 성능 향상을 확인한다.
하천유역 내의 인자를 이용하여 댐의 하천유량(stream flow)을 예측하는 일은 수문특성의 연구와 자연재해에 대한 대비 및 수공구조물과 방재시설의 설계 시 중요한 역할을 한다. 이러한 연구는 과거부터 활발히 이루어졌으며, 아직도 보다 높은 정확도의 결과를 얻기 위해 많은 연구들이 이루어지고 있다. 특히 기존의 유역 내 자료를 통해 비선형적 모델인 인공신경망(artificial neural network)을 이용한 하천유량을 예측하는 연구 역시 활발히 이루어지고 있다. 본 연구의 목적은 여러 유역인자들 중 하천유량에 가장 영향을 미치는 변수를 추출하고 보다 정확한 예측모델을 구축하는 것이다. 기존의 입력자료 선정기법중의 하나인 상호정보량(mutual information)과 수문기상자료의 비선형 동역학적 성분을 추출하는 웨이블렛 변환(wavelet transform)을 사용하여 인공신경망에 적용시켰다. 인공신경망을 적용하는 경우, 수문자료에 있어서 변수의 선택과 자료의 상태가 강우예측의 결과에 큰 영향을 미친다. 이러한 변수의 선택에 있어서 상호정보량을 바탕으로 한 인공신경망 입력변수 선택기법이 많이 사용되고 있다. 일반적으로 시계열자료는 경향성(trend), 주기성(periodicity) 및 추계학적 성분(stochastic component)의 선형조합으로 가정될 수 있으며, 특히 경향성과 주기성은 시계열 모형을 위해 제거되어야 할 결정론적 성분으로 취급한다. 즉. 수문 기상자료에 포함되어 있는 경향성과 주기성과 같은 비선형 동역학적 잡음(nonlinear dynamical noise)을 제거하고 입력자료의 카오스적 거동을 보이는 성분을 분리하기 위해 웨이블렛 변환을 사용하였다. 대상유역은 한강 유역에 포함되어 있는 충주댐으로 선택하였다. 유역 내 다양한 인자들과 하천유량사이의 상호정보량을 구해 영향력이 가장 큰 변수를 추출하고, 그 자료를 웨이블렛 변환을 적용하여 인공신경망의 입력자료로 사용하였다. 본 논문에서는 위와 같은 과정을 이용해 추정한 하천유량 결과와 기존의 방법인 상호정보량을 이용해 인공신경망을 적용한 결과를 실제자료와 비교하였다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.