• Title/Summary/Keyword: 삼각구조

Search Result 245, Processing Time 0.021 seconds

Effect of Centerbody on the Vortex Flow of a LEX-Delta Wing Configuration (중앙동체가 LEX-삼각날개 형상의 와류에 미치는 영향)

  • Sohn, Myong-Hwan;Chung, Hyoung-Seog
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.33 no.12
    • /
    • pp.9-17
    • /
    • 2005
  • An experimental study of the vortical flow over a yawed delta wing with leading edge extension(LEX) was conducted to investigate the effects of the existence of a centerbody configuration on the flow characteristics of the wing and LEX vortices using off-surface visualization and PIV measurements. The qualitative investigation using these two techniques indicated that the effect of the centerbody existence on the vortex formation was minimal at somewhat low range of angles of attack and sideslip angles. However, the quantitative analysis of the surface pressure measurements revealed the effect of centerbody existence to be prominently increased for the cases with higher angles of attack and sideslip angles. It was also found that the centerbody effect was not significant compared to the effect of sideslip for the present LEX-delta wing configuration.

A Study on the Digitizing of Terrain by Triangulated Irregular Networks (비정규삼각망 데이타구조에 의한 지형의 수치화)

  • Lee, Suck Chan;Kho, Young Ho;Lee, Chang Kyung;Choi, Byoung Gil
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.14 no.2
    • /
    • pp.325-334
    • /
    • 1994
  • Modern society is the age of a high state of information and demands more effective land information. Moreover, because the use of land in Korea is intensive, Korea requires more synthetic and systematic geographical information for which the digitizing of terrain is prerequisite. This study aims at development of the data structure which is suitable to the digitizing of terrain for Geographical Information System(GIS). Regular grid has been used generally in Digital Terrain Model(DTM), for it is easy to manipulate. But regular cannot reflect well the terrain surface features. In the meantime, Triangulated Irregular Network(TIN) has complex data structure, but it can describe well terrain surface features and is useful in various applications. In this paper the method which constructs effective DTM by improving TIN has been researched.

  • PDF

Adaptive Element-free Galerkin Procedures by Delaunay Triangulation (Delaunay 삼각화를 이용한 적응적 Element-free Galerkin 해석)

  • 이계희;정흥진;최창근
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.14 no.4
    • /
    • pp.525-535
    • /
    • 2001
  • In this paper, a new adaptive analysis scheme for element-free Galerkin method(EFGM) is proposed. The novel point of this scheme is that the triangular cell structure based on the Delaunay triangulation is used in the numerical integration and the node adding/removing process. In adaptive analysis with this scheme, there is no need to divide the integration cell and the memory cell structure. For the adaptive analysis of crack propagation, the reconstruction of cell structure by adding and removing the nodes on integration cells based the estimated error should be carried out at every iteration step by the Delaunay triangulation technique. This feature provides more convenient user interface that is closer to the real mesh-free nature of EFGM. The analysis error is obtained basically by calculating the difference between the values of the projected stresses and the original EFG stresses. To evaluate the performance of proposed adaptive procedure, the crack propagation behavior is investigated for several examples.

  • PDF

Is Big Data Analysis to Be a Methodological Innovation? : The cases of social science (빅데이터 분석은 사회과학 연구에서 방법론적 혁신인가?)

  • SangKhee Lee
    • The Journal of the Convergence on Culture Technology
    • /
    • v.9 no.3
    • /
    • pp.655-662
    • /
    • 2023
  • Big data research plays a role of supplementing existing social science research methods. If the survey and experimental methods are somewhat inaccurate because they mainly rely on recall memories, big data are more accurate because they are real-time records. Social science research so far, which mainly conducts sample research for reasons such as time and cost, but big data research analyzes almost total data. However, it is not easy to repeat and reproduce social research because the social atmosphere can change and the subjects of research are not the same. While social science research has a strong triangular structure of 'theory-method-data', big data analysis shows a weak theory, which is a serious problem. Because, without the theory as a scientific explanation logic, even if the research results are obtained, they cannot be properly interpreted or fully utilized. Therefore, in order for big data research to become a methodological innovation, I proposed big thinking along with researchers' efforts to create new theories(black boxes).

Global Positioning System 응용을 위한 파이프라인 형 CORDIC회로 설계

  • 이은균;유영갑
    • The Magazine of the IEIE
    • /
    • v.23 no.11
    • /
    • pp.89-100
    • /
    • 1996
  • A new stage-sliced pipiline structure is presented to design a high speed real time Global Positional Systems(GPS) applications. The CORDIC algorothm was revised to generate a pipeline structure, which will be used to produce a large amount of trigonometric computations rapidly. A stage-sliced approach was introduced to adjust the number of interative processes, and thereby to control the precision of computation results. Both the computation and the control circuits of the proposed architecture are included in a pipeline stage, which are intergrated into a stage slice. The circuit was prototyped using six FPGA chips : one is used for glue logics and five of the chips are used for pipeline slice implementation. A single FPGA chip comprising 7 pipeline stages provides one pipeline slice. To compensate and inter-slice time delay, dummy cycles are introduced in inter-slice signal exchanges.

  • PDF

A SIMPLE ALFORITHM FOR MAINTAINING ACJACENCY AND REMESHENG PROECSS IN DELAUNAY-VORONOII TRIANGULATION (들로네이-보로노이 삼각요소생성기법에 있어서 인접성유지와 요소재생성과정을 위한 단순알고리즘 연구)

  • 송영준
    • Computational Structural Engineering
    • /
    • v.6 no.3
    • /
    • pp.99-112
    • /
    • 1993
  • One of the characteristics of Delaunay-Voronoii methods of mesh generation is local remeshing ability in comparison with other methods, which is very useful in adaptive finite element applications. Main part of the process is to construct remeshing element group out of the whole elements and to remesh it. Adjacent element array, accompanied with an additional algorithm of several lines, is introduced to make the process simple so that implementation of the concept is possible at the level of general PC users.

  • PDF

번들-분해법을 이용한 대규모 비분리 콘벡스 프로그램 해법 - 수치 적용결과

  • 박구현;신용식
    • Proceedings of the Korean Operations and Management Science Society Conference
    • /
    • 1995.09a
    • /
    • pp.211-219
    • /
    • 1995
  • 블록-삼각(Block-angular)구조를 갖는 선형 제약식과 분리되지 않는 콘벡스 목적함수의 대규모 비분리 콘벡스 최적화 문제의 해법으로 번들-분해법 (Bundle Based Decomposition)을 이용한 알고리즘 SQA(Separable Quadratic Approximation)은 비분리 콘벡스 프로그램을 분리가능한 2차계획 법(Separable Quadratic Programming) 문제로 근사화시켜 번들-분해법을 축 차적으로 적용한다. 본 연구는 수렴성(local convergence & global convergence) 및 알고리즘 구현 [1]에 이어 이에 대한 수치적용 결과를 중심 으로 소개한다. 수치 적용은 ANSI C로 작성된 SQA 프로그램을 SUN SPARC II에서 실행하였으며 이때 대규모 비분리 최적화 문제의 비분리 목 적함수와 블록-삼각 구조의 선형 제약식들이 계수들은 ANSI C의 랜덤함수 로부터 임의의 값들을 이용하였다. 이와같은 다양한 비분리 콘벡스 최적화 문제에 대한 수렴성, 반복회수 및 처리시간등의 결과와 함께 GAMS/MINOS 의 최적해를 소개한다.

  • PDF

A systolic Array to Effectively Solve Large Sparce Matrix Linear System of Equations (대형 스파스 메트릭스 선형방정식을 효율적으로 해석하는 씨스톨릭 어레이)

  • 이병홍;채수환;김정선
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.17 no.7
    • /
    • pp.739-748
    • /
    • 1992
  • A CGM iterative systolic algorithm to solve large sparse linear systems of equations is presented. For implementation of the algorithm, a systolic array using the stripe structure is proposed. The matrix A is decomposed into a strictly lower triangular matrix, a diagonal matrix, and a strictly up-per triangular matrix, and the two formers and the tatter· are concurrently computed by different linear arrays. Hence, the execution time of this approach Is reduced to half of the execution time of the that a linear array is used. computation of the Irregularly distributed sparse matrix can be executed effectively by using the stripe structure.

  • PDF

Modified Delaunay Triangulation Based on Data Structure of Geometric Modeller (형상 모델러의 자료구조에 의한 수정 Delaunay 삼각화)

  • Chae E.-M.;Sah J.-Y.
    • Journal of computational fluids engineering
    • /
    • v.2 no.2
    • /
    • pp.97-103
    • /
    • 1997
  • A modified Delaunay triangulation technique is tested for complicated computational domain. While a simple geometry. both in topology and geometry, has been well discretized into triangular elements, a complex geometry having difficulty in triangulation had to be divided into small sub-domains of simpler shape. The present study presents a modified Delaunay triangulation method based on the data structure of geometric modeller. This approach greatly enhances the reliability of triangulation, especially in complicated computational domain. We have shown that efficiency of Delaunay triangulation can be much improved by using both the GUI (Graphic User Interface) and OOP (Object-Oriented Programming).

  • PDF

Global Optimization of Composite Structures Using Triangular Patch Algorithm (삼각 패치 알고리듬을 이용한 복합 재료 구조물의 전체 최적화)

  • O, Seung-Hwan;Lee, Byeong-Chae
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.25 no.4
    • /
    • pp.671-684
    • /
    • 2001
  • Several design problems of composite structures are studied via a global optimizer based on attraction regions. MSC/NASTRAN is adopted for static and eigenvalue analysis. The method of modified feasible direction in DOT is used for local optimization. Through the review of global optimization algorithms, the triangular patch algorithm is selected because the algorithm is known to be efficient, robust and powerful for general nonlinear optimization problems. For general applicability, various mechanical properties are considered as design objectives; strain energy, eigenvalue, weight, displacement, and buckling load. In all cases considered, the triangular patch algorithm results in a lot of optimum points and useful design patterns, that are not easy by local algorithms or conventional global algorithms can be determined.