• Title/Summary/Keyword: 산 저항성

Search Result 327, Processing Time 0.027 seconds

Analysis on Determinants of Acceptance Intention of New Agricultural Technology: Using Innovation Resistance Model (농업 신기술 도입의향에 대한 결정요인 분석: 혁신저항모델을 이용하여)

  • Kim, Woong;Kim, Hong-Ki;Yu, Young-Seok;Noh, Jaejong;Chae, Yong-Woo;Choi, Jong-San
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.20 no.2
    • /
    • pp.190-199
    • /
    • 2019
  • This study was conducted to expand the distribution of new technology efficiently by analyzing the structure relationship based on the innovation resistance model and partial least square structural equation model (PLS-SEM). This study selected innovative propensity, relative advantage, compatibility, complexity, trialability, risk, and extension service consisting of educational, technical, and funding services as factors affecting innovation resistance. This study constructed a questionnaire that measured 11 factors including acceptance intention of new technology using 33 indicators. Data was from April to October, 2017, targeting 180 farmers who did not join in projects to spread new technologies of the Rural Development Administration. Results showed the factors positively and significantly affecting innovation resistance include complexity and risk. Innovative propensity did not have any effect on innovation resistance. However, it positively affected acceptance intention of new technology. The service of the extension organizations had a negative effect on innovation resistance, but did not affect acceptance intention of new technology. This study suggests that extension services should promote activities such as education, consulting, publicity and pilot projects related with new technologies in order to minimize the antipathy toward new agricultural technologies.

Isolation of Coat Protein Gene from Cucumber Mosaic Virus and Its Introduction into Tobacco (오이 모자이크 바이러스 외피 단백질 유전자 분리 및 담배로의 형질전환)

  • 손성한;김경환;김영태;박종석;김주곤;이광웅;황영수
    • Korean Journal of Plant Tissue Culture
    • /
    • v.22 no.3
    • /
    • pp.149-155
    • /
    • 1995
  • The coat protein (CP) gene was cloned from RNA genome of the Cucumber Mosaic Virus strain ABI (CMV-ABI) isolated in Korea. The comparisons of the nucleotide sequence of the cloned CP gene and its deduced amino acid sequences with other CP genes revealed that the CMV-ABI belongs to subgroup I (type I), CMV-ABI developed the typical mosaic symptom in infected plants. Tobacco plants (Samsun and NC82) were transformed by leaf-disc transformation via Agrobacterium, temefaciens LB4404 harboring pVCP, witch CMV-ABI CP gene was inserted into the pBI121, and a number of mature transgenic tobacco plants were developed. Southern and PCR analysis of genomic DNA from the transgenic plants showed that the CP gene was integrated into the genomes of the most of the transgenic plant. Result of the segregation patterns of resistance in T1 seedlings of the plants to kanamycin showed that the transgenic plants containing l,2 and 3 copies of CP gene were50%, 39% and 11% of the total transgenic plants, respectively.

  • PDF

Development of the feedback resistant pheAFBR from E. coli and studies on its biochemical characteristics (E. coli 유래 pheA 유전자의 되먹임제어 저항성 돌연변이의 구축과 그 단백질의 생화학적 특성 연구)

  • Cao, Thinh-Phat;Lee, Sang-Hyun;Hong, KwangWon;Lee, Sung Haeng
    • Korean Journal of Microbiology
    • /
    • v.52 no.3
    • /
    • pp.278-285
    • /
    • 2016
  • The bifunctional PheA protein, having chorismate mutase and prephenate dehydratase (CMPD) activities, is one of the key regulatory enzymes in the aromatic amino acid biosynthesis in Escherichia coli, and is negatively regulated by an end-product, phenyalanine. Therefore, PheA protein has been thought as useful for protein engineering to utilize mass production of essential amino acid phenylalanine. To obtain feedback resistant PheA protein against phenylalanine, we mutated by using random mutagenesis, extensively screened, and obtained $pheA^{FBR}$ gene encoding a feedback resistant PheA protein. The mutant PheA protein contains substitution of Leu to Phe at the position of 118, displaying that higher affinity (about $290{\mu}M$) for prephenate in comparison with that (about $850{\mu}M$) of wild type PheA protein. Kinetic analysis showed that the saturation curve of $PheA^{FBR}$ against phenyalanine is hyperbolic rather than that of $PheA^{WT}$, which is sigmoidal, indicating that the L118F mutant enzyme has no cooperative effects in prephenate binding in the presence of phenylalanine. In vitro enzymatic assay showed that the mutant protein exhibited increased activity by above 3.5 folds compared to the wild type enzyme. Moreover, L118F mutant protein appeared insensitive to feedback inhibition with keeping 40% of enzymatic activity even in the presence of 10 mM phenylalanine at which the activity of wild type $PheA^{WT}$ was not observed. The substitution of Leu to Phe in CMPD may induce significant conformational change for this enzyme to acquire feedback resistance to end-product of the pathway by modulating kinetic properties.

Ar 유량 변화에 따라 RF Magnetron Sputterin 법으로 제조된 GZO 박막의 특성변화

  • Jeong, Seong-Jin;Kim, Deok-Gyu;Kim, Hong-Bae
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2011.08a
    • /
    • pp.232-232
    • /
    • 2011
  • 투명전도산화물에 대한 연구가 많이 이루어지고 있으며, 최근 Ga이 도핑된 ZnO의 연구가 많이 되고 있다. 투명전도산화물은 태양전지, 평면디스플레이와 같은 다양한 분야에 응용이 가능하다. 본 연구에서는 RF magnetron sputtering을 이용하여 Ar gas 유량 변화에 따른 GZO 박막을 연구하였다. 기판으로는 유리기판을 사용하였으며, 전기적, 광학적, 구조적인 특성을 조사하였다. 박막의 증착시 초기 압력은 $2.0{\times}10^{-6}$Torr 이하로 하였으며, 증착온도는 상온으로 고정하여 증착하였다. 기판은 Corning 1737 유리 기판을 사용하였고, GZO 타겟은 ZnO : Ga 분말이 각각 97 : 3 wt.%로 소결된 타겟을 사용하였다. Ar 유량변수는 20, 40, 60, 80 sccm으로 변화를 주었다. 유리기판에 증착된 모든 GZO박막은 약 200 nm의 두께로 증착되었으며 모든 GZO 박막에서 85%이상의 투과율을 나타내었다. Ar 유량이 적을수록 투과율을 증가하였으며, 광학적 밴드갭 또한 증가하였다. 공정별로 제작된 모든 GZO박막에서 (002)면의 배향성이 관찰되었고, Ar 유량이 적을수록 박막의 결정성은 향상되었다. Hall 측정 결과 Ar 유량이 20 sccm일 때 전기비저항 $3.46{\times}10^{-3}{\Omega}cm$, 전하의 농도 $3.832{\times}10^{-20}\;cm^{-3}$, 이동도 $4.7cm^2V^{-1}s^{-1}$로 전극으로서의 특성을 나타내었다. GZO 박막의 경우 Ar 유량이 적었을 때 결정성이 높아지고, 전극 특성이 더 우수한 것을 확인할 수 있었다.

  • PDF

Characterization of antimicrobial proteins produced by Bacillus sp. N32 (Bacillus sp. N32 균주가 생산하는 항균 단백질 특성)

  • Lee, Mi-Hye;Park, In-Cheol;Yeo, Yun-Soo;Kim, Soo-Jin;Yoon, Sang-Hong;Lee, Suk-Chan;Chung, Tae-Young;Koo, Bon-Sung
    • The Korean Journal of Pesticide Science
    • /
    • v.10 no.1
    • /
    • pp.56-65
    • /
    • 2006
  • An antagonistic bacterial isolate, that inhibits the growth of plant pathogens, was selected and identified from 5,000 isolates screened from the rhizosphere of various crop plants. An isolate Bacillus sp. N32, tested against Colletotrichum gloeosporioides causing anthracnose disease in hot pepper, produced both a heat resistant antifungal protein and a heat sensitive antifungal protein. The heat resistant protein was partially purified by Ammonium sulfate fractionation and gel filtration chromatography. The bioautography showed that the proteins possessed high antifungal activity. The biosynthetic gene cluster responsible for the heat resistant antifungal protein was cloned from cosmid library using DNA probe obtained from PCR product with the primers targeting the conserved nucleotide sequence of the synthetic genes reported earlier, Most of the clones obtained showed higher homology to fengycin antibiotic synthetic gene family reported earlier. On the other hand, the heat sensitive protein was isolated from SDS-PAGE and electroblotting to determine the N-terminal amino acid sequences. The heat sensitive antifungal protein gene was cloned from the ${\lambda}-ZAP$ libraries using a DNA probe based on the N-terminal amino acid sequences of the heat sensitive protein. We are contemplating to clone and sequence the whole gene cluster encoding the heat sensitive protein for further analysis.

Evaluation of the Natural Antimicrobials against Yeasts in Functional Beverages to Control Quality loss (효모에 의한 기능성 음료 변질 제어를 위한 천연항균물질 항균력 평가)

  • Yeon, Ji-Hye;Lee, Ji-Young;Lee, Hee-Seok;Ha, Sang-Do;Park, Chul-Soo;Woo, Moon-Jea;Lee, Sang-Hun;Kim, Jin-Soo;Lee, Chon
    • Journal of Food Hygiene and Safety
    • /
    • v.24 no.3
    • /
    • pp.273-276
    • /
    • 2009
  • We investigated eight active natural antimicrobials for preservation of functional beverages that are usually degraded by yeasts rather than by bacteria due to a high sugar content and a low pH. Five strains of yeasts (S. cerevisiae, Z. bailii, P. membranaefaciens, C. albicans, and P Anomala) were tested with eight natural antimicrobial agents ($\varepsilon$-polylysine, yucca extract, vitamin $B_1$ derivative, scutellaria baicalensis extract, chitooligosaccharid, allyl isothiocyanate, sucrose-fatty acid ester, and oligosaccharide). The lowest minimal inhibitory concentrations (MIC) were 10 ppm for oligosaccharide and sucrose-fatty acid ester against S. cerevisiae and Z. bailii, 10 ppm for allyl isothiocynate against P. membranaefaciens and C. albican, and 10 ppm for allyl isothiocynate and oligosaccharide against P. anomala. No growth were observed for five kinds of yeasts in functional beverages containing sodium benzonate at concentration of 0.015% or higher. The resistance of S. cerevisiae, Z. bailii, and P. Anomala against natural antimicrobial agents was lower than those of P. membranaefaciens and C. albican. Allyl isothiocyanate, oligosaccharide, and sucrose-fatty acid ester showed the highest antimicrobial activities among the eight tested antimicrobials. These results can be applied to develop new natural antimicrobial agents to improve microbial quality of functional beverages.

Dual Coating Improves the Survival of Probiotic Bifidobacterium Strains during Exposure to Simulated Gastro-Intestinal Conditions (위장관내 조건에서 이중코팅 처리 된 프로바이오틱 비피도박테리움의 생존력 향상)

  • Kang, Joo Yeon;Lee, Do Kyung;Park, Jae Eun;Kim, Min Ji;Lee, Joong-Su;Seo, Jae-Gu;Chung, Myung Jun;Shin, Hea Soon;Ha, Nam Joo
    • Korean Journal of Microbiology
    • /
    • v.49 no.3
    • /
    • pp.275-281
    • /
    • 2013
  • Probiotics have been reported to benefit human health by modulating immunity, lowering cholesterol, improving lactose tolerance, and preventing some cancer. Once ingested, probiotic microorganisms have to survive harsh conditions such as low pH, protease-rich condition, and bile salts during their passage through the gastro-intestinal (GI) tract colonize and proliferate to exert their probiotic effects. The dual coating technology, by which the bacteria are doubly coated with peptides and polysaccharides in consecutive order, was developed to protect the ingested bacteria from the harsh conditions. The aim of the study was to evaluate the viable stability of a doubly coated blend of four species of Bifidobacterium by comparing its bile/acid resistance and heat viability in vitro with that of the non-coated blend. After challenges with acid, bile salts, heat, and viable cell counts (VVCs) of the dual coated and non-coated blend were determined by cultivation on agar plates or flow cytometric measurement after being stain with the BacLigtht kit$^{TM}$. The results showed that the dual coated blend was much higher resistant to the acidic or bile salt condition than the non-coated blend and heat viability was also higher, indicating that the dual coating can improve the survival of probiotic bacteria during their transit through the GI tract after consumption.

Evaluation of Agronomic Characteristics, Nutritional Contents, and Insect Response of the Transgenic Potato Resistant to Glufosinate Ammonium (제초제 저항성 형질전환 감자의 농업적 특성, 영양 성분 및 해충 반응성 평가)

  • Ahn, Soon-Young;Cho, Kwang-Soo;Seo, Hyeo-Won;Yi, Jeong-Yoon;Bae, Shin-Cheol;Cho, Ji-Hong;Park, Young-Eun;Kim, Ju-Il;Kim, Hyun-Jun;Cho, Hyun-Mook
    • Horticultural Science & Technology
    • /
    • v.29 no.3
    • /
    • pp.247-254
    • /
    • 2011
  • The agronomic characteristics, nutritional contents, and insect response of the potato clones transformed with a glufosinate ammonium resistance gene were evaluated. Among the 4 transgenic potato clones, the Bar 3 clone was selected as a promising one for commercialization. The Bar 3 clone showed similar tuber yield capacity but higher herbicide resistance as compared with the non-transgenic potato cv. Dejima. The herbicide resistance of the Bar 3 clone was more than 5 times higher when tested with the herbicide concentration recommended by the producer. The major agronomic characteristics of the Bar 3 clone were not different from those of the non-transgenic Dejima. The annual variation in yields and agronomic characteristics showed similar tendency for 2 years from the third to fourth generation after transformation. The tubers of the Bar 3 clone also showed low occurrence in common scab and physiological disorders such as cracking and secondary growth. But the reasons for such results are yet to be studied. Also, it was considered that the Bar 3 clone have a potential of reducing not only common scab occurrence but also soil erosion during potato cultivation in field. The nutritional contents (mineral compound, vitamin C and amino acid) and response to Spodoptera exigua of the transgenic potato clones were not significantly different.

$Cu(In,Ga)Se_2$ 박막 태양전지 제작을 위한 폴리이미드 기판의 열분석 및 후면전극 특성 분석

  • Park, Su-Jeong;Jo, Dae-Hyeong;Jeong, Yong-Deok;Kim, Je-Ha
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2012.02a
    • /
    • pp.593-593
    • /
    • 2012
  • CIGS 박막 태양전지는 일반적으로 soda-lime glass(SLG)를 기판으로 사용하여 SLG/Mo/CIGS/CdS/ZnO/ITO/Grid의 구조로 제작된다. 하지만 SLG를 기판으로 사용할 경우, 유리의 특성상 무게가 무겁고, 유연성이 없기 때문에 건축물 적용에 적합하지 않다. 이러한 문제점을 극복하기 위해 가볍고 유연한 금속 및 폴리이미드 기판을 이용한 CIGS 태양전지가 널리 연구되고 있다. 그러나, 폴리이미드 기판의 경우, 특성이 우수한 CIGS 박막을 얻기 위한 고온 공정을 사용할 수 없기 때문에 이에 대한 고려가 필요하다. 본 논문에서는 CIGS 박막 태양전지 제작을 위한 폴리이미드 기판의 특성과 그 위에 형성한 후면 전극의 특성을 논의하고자 한다. 4종류의 폴리이미드 기판에 대한 열 특성을 시차주사열량계(differential scanning calorimeter)와 열중량분석기(thermogravimetric analysis), 열기계분석기(thermo mechanical anaylsis)를 이용해 분석하였다. 또한 Mo 후면 전극을 DC-sputter를 이용해 형성한 후, XRD와 AFM, 4-point probe를 이용하여 결정성 및 표면 거칠기, 면저항을 분석하였다. 결정성과 거칠기는 SLG에 증착했을 때와 동일한 결과를 보였으며, 면저항은 폴리이미드 필름에 증착 할 경우 더 크게 측정되었다. 본 연구는 중소기업청 산연기술개발사업(SL122689) 및 과학기술연합대학원대학교(UST)의 지원을 받아 수행된 "공동연구 지원사업"의 연구결과입니다.

  • PDF

Mechanical Properties and Carbonation Resistance of Water-Soluble Sulfur Concrete (수용성 유황 첨가 콘크리트의 역학 특성 및 탄산화 저항성)

  • Hong, Ki Nam;Ji, Se Young;Park, Jae Kyu;Jung, Kyu San;Han, Sang Hoon
    • Journal of the Korean Society of Safety
    • /
    • v.29 no.4
    • /
    • pp.103-109
    • /
    • 2014
  • In this study, two types of water-soluble sulfur, LSA and LSB, were developed and the influence of the water-soluble sulfur on the mechanical properties and durability of concrete were experimentally evaluated. In order to evaluate mechanical properties and carbonation resistance of concrete with water-soluble sulfur, compressive strength test, flexural strength test, bonding strength test, and carbonation resistance test were performed. Compressive strength of only concrete with 1% LSA was increased while that of concrete with LSB was proportionally increased with the higher LSB dosage. On the other hand, flexural strength of concrete with LSA and LSB was increased by 12-41% and 36-74%, respectively. Carbonation resistance of concrete with water-soluble sulfur were increased by 25-66%. As a result, it should be noted that the water-soluble sulfur can not only solve the demerit of sulfur concrete but also offer the durability of sulfur concrete.