• Title/Summary/Keyword: 산 저항성

Search Result 327, Processing Time 0.025 seconds

Increase in Moisture Barrier Properties of Alginate-based Films by Composting with Fatty Acids and $CaCl_{2}$ Treatment (지방산과 $CaCl_{2}$ 처리에 의한 알긴산 필름의 수분저항성 증진)

  • Rhim, Jong-Whan;Kim, Ji-Hye
    • Korean Journal of Food Science and Technology
    • /
    • v.36 no.3
    • /
    • pp.432-439
    • /
    • 2004
  • Increase in water vapor barrier properties of sodium alginate films was studied by preparing composite films with fatty acids, i.e., lauric, palmitic, stearic, and oleic acids, and by treatment with 3% $CaCl_{2}$ solution for 3 min. Film thickness, surface color, microstructure, tensile strength (TS), elongation at break (E), water vapor permeability (WVP), water solubility (WS), and sorption isotherm of films were investigated. Microstructure of films observed with SEM was changed by fatty acid and $CaCl_{2}$ treatments. TS decreased 25-70% depending on fatty acid used, and increased 1.5- to 2-fold by $CaCl_{2}$ treatment. E decreased by both fatty acid and $CaCl_{2}$ treatments. Except oleic acid, WVP decreased significantly (p<0.05) by forming composite films with fatty acids, particularly with stearic acid, WVP decreased more than two-fold. WS also decreased by fatty acid and $CaCl_{2}$ treatments. In stearic acid, WS decreased about 30-fold by combined treatment of fatty acid and $CaCl_{2}$. Sorption isotherm showed typical biphasic pattern with deliquescent point of 0.75. Results of isotherms and BET monolayer moisture content indicated hydrophilicity of film decreased by $CaCl_{2}$ treatment.

Viability of Bifidobacterial Strains against Acid, Bile Acid, and Oxygen Exposure (산, 담즙산, 산소 노출에 대한 비피도박테리아의 생존에 관한 연구)

  • Lim, Kwang-Sei;Huh, Chul-Sung
    • Food Science of Animal Resources
    • /
    • v.26 no.4
    • /
    • pp.503-510
    • /
    • 2006
  • Survival and stability of 19 bifidobacterial strains included 13 isolates from Korean infants against acid, bile acid and oxygen exposure were examined. Acid resistance of selected strains at pH values of 4.0, 3.0 and 2.0 was tested. Among the bifidobacterial strains tested, B. bifidum B3, B. longum D6, and B. adolescentis F1 exhibited higher viable cell counts exposed to acid whereas other strains had various results. The abilities of the strains to grow in the MRS broth containing 0.2% thioglycolic acid and 0.2% oxgall were tested and the tolerance of B. bifidum B3 and B. longum D6 to bile acid were higher than that of others. Even though in same species, the tolerance of tested strains to bile acid were variable. Stabilities of tested strains to oxygen exposure were variable and B. bifidum and B. longum strains showed relatively higher viable cell counts after 48 hours exposure to aerobic incubation. These results demonstrated that the survival and stability of bifidobacterial strains to acid, bile acid, and oxygen exposure were variable and strain-dependent. Due to their tolerant ability to environmental factors like acid, bile acid, and oxygen, B. bifidum B3 and B. longum D6 had good potential properties as probiotic cultures and may be useful for industrial application.

Relationship between Concentration and Performance of Supporting Electrolyte of Redox Flow Battery Using Polyoxometalate (Polyoxometalate를 이용한 레독스 흐름전지의 지지 전해질 농도와 성능의 관계)

  • Yong Jin Cho;Byeong Wan Kwon
    • Applied Chemistry for Engineering
    • /
    • v.34 no.2
    • /
    • pp.175-179
    • /
    • 2023
  • Herein we present a tested aqueous based redox flow battery (RFB) that employs phosphomolybdic acid and ferrocyanide as the negative and positive active species in an aqueous sodium hydroxide solution. The different concentrations of NaOH solution, such as 1.0, 1.2, 1.4, 1.5, and 1.6 M, were prepared for checking the electrochemical properties and stability. The NaOH concentration as a supporting electrolyte in the negative species appears to play an important role in the electrochemical properties of phosphomolybdic acid. Moreover, the optimum value of the concentration is necessary for the best performance. The resistance of the electrolyte decreased with increasing the concentration up to 1.5 M and then increased to 1.6 M. Hence, the decrease in electrolyte resistance appears to greatly influence the energy efficiency, which is improved by increasing the concentration of NaOH. In addition, the 1.5 M NaOH solution appears to be the concentration required for optimum performance.

Studies on Breeding of F$_1$ Hybrid Rice Using the Korean Cytoplasmic and Genetic Male Sterile Rice I. Breeding of Hybrid Rice Using the Cytoplasmic-Genetic Male Sterility (세포질적 유전자적 웅성불임을 이용한 벼 일대잡종 육성연구 I. 세포질적 유전자적 웅성불임계통 이용과 일대잡종 육성)

  • Suh, Hak-Soo;Lee, Chang-Un;Heu, Mun-Hue
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.30 no.4
    • /
    • pp.431-435
    • /
    • 1985
  • Nine hybrid rices crossed between Korean cytoplasmic-genetic male sterile rices having the WA cytoplasm and the Korean restorer lines or varieties, HR1619A/Nampungbyeo, HR1619A/Gayabyeo, HR1619A/Line234, TongilA/Nampungbyeo, TongilA/Cheongcheongbyeo, Suwon 296A/Line 209, Suwon 296A/Line 237, Suwon 296A/Line 252 and Line 201A/Line 234, and their parents were grown at Yeungnam University in 1984. The rough rice yield of the hybrids Line 201A/Line 234, TongilA/Nampungbyeo and HR1619A/Nampungbyeo were 939, 927 and 900 Kg/10a respectively. The heterosis(F$_1$/Midparent) of the above three hybrids was 40%, 20% and 19%, the heterobeltiosis(F$_1$/Better parent) was 36%, 17% and 10%, and the standard heterosis (F$_1$/Standard variety, Cheongcheongbyeo) was 19%, 17% and 14% respectively. The hybrids HR1619A/ Gayabyeo and Suwon 296A/Line 237 showed negative heterosis in grain yield. Significant heterobeltiosis for grain number per panicle was found while less or no heterobeltiosis was observed in panicle number per hill, 1000-grain weight and grain fertility. The bacterial leaf blight disease reaction of the hybrids tested was almost the same as that of one parent at least. The amylose content of the hybrids was medium to low the same as their parents. The protein content and alkali digestion value of the hybrids were almost the same as their parents.

  • PDF

MAGNETORESISTANCE AND Mn DIFFUSION BEHAVIORS OF CoNbZr-BASED SPIN VALVES WITH NANO OXIDE LAYERS

  • Kim, Jong-Soo;Kim, Young-Keun;Lee, Seong-Rae
    • Proceedings of the Korean Magnestics Society Conference
    • /
    • 2002.12a
    • /
    • pp.58-59
    • /
    • 2002
  • 고밀도 자기기록 매체의 재생 헤드로 응용되기 위해서는 높은 자기 저항비와 소자 제조 및 작동시 발생되어지는 열에 대해서 안정해야한다. 일반적으로 스핀밸브에서 나타나는 열화현상 중 가장 주된 원인은 반강자성체에 사용된 Mn이 고정층 및 비자성층으로의 확산으로 인해 반강자성체/강자성체 산이의 교환결합력의 감소와 스핀의존산란이 감소되어 자기적 특성이 열화 되는 것이다[1]. 이러한 상호확산은 거칠기, 결정성, 결정립 크기와 같은 미세구조에 크게 의존한다[2]. (중략)

  • PDF

Evaluation on the Acid Attack Resistance of Shotcrete with Aluminate Accelerator (알루미네이트계 급결제를 사용한 숏크리트의 산침식에 대한 저항성 평가)

  • Kim, Seoung-Soo;Kim, Hong-Sam;Kim, Dong-Gyou;Yoon, Ha-Young;Bong, Won-Yong
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2006.05b
    • /
    • pp.249-252
    • /
    • 2006
  • Recently, as it has greatly increased the demand on the serviceability of subway, cable tunnel and underground storage, the stability of tunnel structures has been attracting the concern of engineers and researchers. Thus the aim of the present study is to evaluate acid attack resistance of shotcrete using in tunnel structures. And, in order to understand the deterioration mechanism, test using scanning electron microscopy(SEM) analysis and X-ray diffraction showed that the deterioration mechanism due to acid attack in shotcrete.

  • PDF

SREBP-1c Ablation Protects Against ER Stress-induced Hepatic Steatosis by Preventing Impaired Fatty Acid Oxidation (지방산 산화 장애 제어를 통한 SREBP-1c 결핍의 소포체 스트레스 유발 비알콜성지방간 보호작용)

  • Lee, Young-Seung;Osborne, Timothy F.;Seo, Young-Kyo;Jeon, Tae-Il
    • Journal of Life Science
    • /
    • v.31 no.9
    • /
    • pp.796-805
    • /
    • 2021
  • Hepatic endoplasmic reticulum (ER) stress contributes to the development of steatosis and insulin resistance. The components of unfolded protein response (UPR) regulate lipid metabolism. Recent studies have reported an association between ER stress and aberrant cellular lipid control; moreover, research has confirmed the involvement of sterol regulatory element-binding proteins (SREBPs)-the central regulators of lipid metabolism-in the process. However, the exact role of SREBPs in controlling lipid metabolism during ER stress and its contribution to fatty liver disease remain unknown. Here, we show that SREBP-1c deficiency protects against ER stress-induced hepatic steatosis in mice by regulating UPR, inflammation, and fatty acid oxidation. SREBP-1c directly regulated inositol-requiring kinase 1α (IRE1α) expression and mediated ER stress-induced tumor necrosis factor-α activation, leading to a reduction in expression of peroxisome proliferator-activated receptor γ coactivator 1-α and subsequent impairment of fatty acid oxidation. However, the genetic ablation of SREBP-1c prevented these events, alleviating hepatic inflammation and steatosis. Although the mechanism by which SREBP-1c deficiency prevents ER stress-induced inflammatory signaling remains to be elucidated, alteration of the IRE1α signal in SREBP-1c-depleted Kupffer cells might be involved in the signaling. Overall, the results suggest that SREBP-1c plays a crucial role in the regulation of UPR and inflammation in ER stress-induced hepatic steatosis.

Evaluation of Strength and Durability of Mortar using Ferronickel Slag Powder and Admixtures (페로니켈슬래그 미분말 및 혼화재의 복합사용에 따른 모르타르의 강도 및 내구성 평가)

  • Jo, Seol-Ah;Yoo, Jeong-Hwan;Park, Sang-Soon
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.7 no.3
    • /
    • pp.262-270
    • /
    • 2019
  • Ferronickel slag, which is an industrial byproduct, is activated by mechanochemical reaction as a nonferrous metal and can be used as an admixture. Therefore, ferronickel slag is used as a substitute resource of admixture. In this study, to evaluate the effect of mixed of ferronickel slag powder and admixture, a mortar using a mixture of ferronickel slag powder, quicklime, gypsum and calcium chloride was fabricated by vibrated and rolled manufacturing method. Strength were evaluated by flexural and compressive strength tests, and durability was evaluated by performing chlorine ion penetration resistance and chemical resistance test. When the substitution ratio of ferronickel slag powder is constant, it is considered that the mixed use of quicklime, gypsum and calcium chloride as admixtures increases the performance.

Bile Salts Degradation and Cholesterol Assimilation Ability of Pediococcus pentosaceus MLK67 Isolated from Mustard Leaf Kimchi (갓김치에서 분리된 Pediococcus pentosaceus MLK67의 담즙산 분해능 및 콜레스테롤 동화능)

  • Lim, Sung-Mee
    • Korean Journal of Microbiology
    • /
    • v.47 no.3
    • /
    • pp.231-240
    • /
    • 2011
  • The objective of this study was to evaluate the acid and bile tolerance, bile salt hydrolase (BSH) activity, and cholesterol assimilation ability of lactic acid bacteria isolated from mustard leaf kimchi. MLK11, MLK22, MLK27, MLK41, and MLK67 were relatively acid- and bile-tolerant strains, with more than $10^5$ CFU/ml after incubation in simulated gastric juice and intestinal fluid, while MLK53 was the most sensitive strain to acid and bile. Strains MLK22 and MLK67 deconjugated the highest level of sodium glycocholate with more than 3.5 mM of cholic acid released, while deconjugation was lowest by strains MLK13 and MLK41 which released only 1.35 mM and 1.16 mM, respectively. Specially, strains MLK22 and MLK67 showed higher deconjugation of sodium glycocholate compared to sodium taurocholate and conjugated bile mixture. Although strains MLK22 and MLK67 exhibited maximal BSH activity at the stationary phase, MLK22 had somewhat higher total BSH activity compared to MLK67 towards both sodium glycocholate and sodium taurocholate. Meanwhile, cholesterol removal varied among tested strains (p<0.05) and ranged from 5.22 to 39.16 ${\mu}g$/ml. Especially, MLK67 strain assimilated the highest level of cholesterol in media supplemented with 0.3% oxgall, cholic acid, and taurocholic acid (p<0.05). According to physiological and biological characteristics, pattern of carbohydrate fermentation, and 16S rDNA sequence, strain MLK67 that may be considered as probiotic strain due to acid and bile tolerance and cholesterol-lowering effects was identified as Pediococcus pentosaceus MLK67.

Effect of the amino acid mixture on freeze-drying and preservation of Lactobacillns casei YIT 9018 (아미노산 혼합용액이 Lactobacillus casei YIT 9018의 동결건조 및 저장성에 미치는 영향)

  • 윤성식;이해옥;유주현
    • Microbiology and Biotechnology Letters
    • /
    • v.14 no.5
    • /
    • pp.421-426
    • /
    • 1986
  • This study was attempted to find out effective storage methods of Lactobacillus casei YIT 9018, industrial strain for fermented mil k production, without severe bacterial death and activity deteriorations. The cryoprotective effect of the ammo acid mixture consisting of glycine and DL-g1utamic acid on the test strain were examined and also compared with those other protectants already reported. The apparent protective effect by the amino acid mixture was observed to controls. Both glycine and DL-glutamic acid prevented the freezing death of test strain and his effect of 1. casei YIT 9018 had reached stationary stage in MRS-broth 18h after inoculation. Cells harvested from stationary stage were most resistant to freezing damage. The viability of the test strain was affected by rehydration media and the recovery of viable cells was increased about threefold when amino acid mixture was used for rehydration. The presence of non-fat milk solid (NFMS), sucrose and lactose in amino acid mixture increased viability of the test strain up to 85%. In this case, optimal concentrations of NFMS, sucrose and lactose were 10%, 7.5-10%, 7.5-10%, respectively.

  • PDF