• Title/Summary/Keyword: 산란 보정

Search Result 200, Processing Time 0.034 seconds

Receiving Channel Calibration of Multi-Channel Integrated Receiver for Monopulse Radar (모노펄스 레이다용 다채널 집적 수신기의 수신 채널 보정)

  • Jinsung Park
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.24 no.3
    • /
    • pp.109-114
    • /
    • 2024
  • The effect of inter-channel coupling in multi-channel monopulse receiver is expected to increase by miniaturization trend of receiver. Therefore, in this paper, calibration method is proposed to compensation for inter-channel coupling in receiver of monopulse radar. And it can prevent distortion of angle information of target. Hardware configuration that consists of switch, directional coupler, matched load, ADC(Analog to Digital Converter), signal source of calibration is proposed to calibration. Total nine scattering parameters are obtained by controlling the switch and signal source of calibration. After that, method for restoring the undistorted signal is proposed using the mathematical relationship between the monopulse signal output from the antenna and the monopulse signal passing through the multi-channel receiver in the presence of inter-channel coupling.

Ship Detection by Satellite Data: Radiometric and Geometric Calibrations of RADARS AT Data (위성 데이터에 의한 선박 탐지: RADARSAT의 대기보정과 기하보정)

  • Yang, Chan-Su
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.10 no.1 s.20
    • /
    • pp.1-7
    • /
    • 2004
  • RADARSAT is one of many possible data sources that can play an important role in marine surveillance including ship detection because radar sensors have the two primary advantages: all-weather and day or night imaging. However, atmospheric effects on SAR imaging can not be bypassed and any remote sensing image has various geometric distortions, In this study, radiometric and geometric calibrations for RADARSAT/SAT data are tried using SGX products georeferenced as level 1. Even comparison of the near vs. far range sections of the same images requires such calibration Radiometric calibration is performed by compensating for effects of local illuminated area and incidence angle on the local backscatter, Conversion method of the pixel DNs to beta nought and sigma nought is also investigated. Finally, automatic geometric calibration based on the 4 pixels from the header file is compared to a marine chart. The errors for latitude and longitude directions are 300m and 260m, respectively. It can be concluded that the error extent is acceptable for an application to open sea and can be calibrated using a ground control point.

  • PDF

Evaluation of Physical Correction in Nuclear Medicine Imaging : Normalization Correction (물리적 보정된 핵의학 영상 평가 : 정규화 보정)

  • Park, Chan Rok;Yoon, Seok Hwan;Lee, Hong Jae;Kim, Jin Eui
    • The Korean Journal of Nuclear Medicine Technology
    • /
    • v.21 no.1
    • /
    • pp.29-33
    • /
    • 2017
  • Purpose In this study, we evaluated image by applying normalization factor during 30 days to the PET images. Materials and Methods Normalization factor was acquired during 30 days. We compared with 30 normalization factors. We selected 3 clinical case (PNS study). We applied for normalization factor to PET raw data and evaluated SUV and count (kBq/ml) by drawing ROI to liver and lesion. Results There is no significant difference normalization factor. SUV and count are not different for PET image according to normalization factor. Conclusion We can get a lot of information doing the quality assurance such as performance of sinogram and detector. That's why we need to do quality assurance daily.

  • PDF

Phase delay of X-band GB-SAR system affected by humidity change (습도변화에 따른 X-band GB-SAR 시스템의 위상지연)

  • Lee, Jae-Hee;Lee, Hoon-Yol;Cho, Seong-Jun;Sung, Nak-Hoon
    • Proceedings of the KSRS Conference
    • /
    • 2009.03a
    • /
    • pp.202-206
    • /
    • 2009
  • 본 논문에서는 X-band GB-SAR 시스템을 이용하여 지상을 모니터링 하였으며, 대기 중의 습도와 거리의 영향을 받는 대기보정 상수를 산출하였다. 시스템에서 X-band 안테나는 중심주파수 9.65 GHz, 밴드 폭 600 MHz이며, 신호의 증폭과 다편파 측정 및 분석을 위해 각각 마이크로파 앰프와 마이크로파 스위치를 이용하였다. Azimuth step과 length는 5 cm와 5 m로 최대 관측 거리는 약 200 m 이다. phase 분석에 쓰인 산란체는 총 5개의 trihedral corner reflector로서, 시스템으로부터의 거리를 각각 다르게 설정하였다. 실험은 3일간 연속적으로 수행되었으며, 실험간 상대습도는 최소 50 %에서 최대 90 %까지로 약 40 %의 변화를 보였다. 고정된 상태의 reflector는 마치 이동한 것과 같은 현상을 보였는데 이는 마이크로화의 전파과정에서 발생하는 거리와 습도에 따른 지연효과라고 판단하였으며, 이를 배제하기 위하여 대기보정식을 산출하였다. 산출과정에서 temporal coherence가 0.98 이하인 reflector의 신호는 제외하였는데 이 경우 시스템 및 reflector의 안정성에 문제가 있다고 판단하였기 때문이다. 산출된 대기보정식은 C-band 안테나를 사용한 실험과 비교하여 보았다.

  • PDF

Radiometric Corrections of Digital Remote Sensing Data (원격탐사자료의 放射값 補正)

  • 정성학
    • Korean Journal of Remote Sensing
    • /
    • v.10 no.1
    • /
    • pp.15-29
    • /
    • 1994
  • Radiometric correction refers to variations in the data that are not caused by the object or scene being scanned. These variations can be caused by differing sensitivities of the detectors of the sensing system, malfunctioning detectors, or atmospheric interference. Radiometric corrections can be applied to correct for these variations, such as for differing sensitivities of detectors (causing striped image), for detectors (resulting in pixels with digital values of zero), or to correct for atmospheric bias due to scattering of radiation. This paper discussed and illustrated some of the important principles of the radiometric correction methods.

Analysis of Low-frequency Reverberation Inshallow Water (천해에서의 저주파 잔향음 분석)

  • 박길선;나정열;최지웅;오선택;박정수
    • The Journal of the Acoustical Society of Korea
    • /
    • v.20 no.4
    • /
    • pp.94-100
    • /
    • 2001
  • In October 1997, low-frequency reverberation was measured at an experimental site off the west coast of the Jeju island using the explosive charge, Signals Underwater Sound (SUS). Received signals were separated into the noise, the reflection, and the scattering region, and then were analyzed for the spectral and statistical characteristics of each region. In the analysis of the spectrum we verified that each region had a unique frequency band and statistical characteristics as well. The results of this analysis showed that the real and imaginary portions were shown to be both normal distributions in each frequency bin. The reverberation envelope had a Rayleigh distribution and the phase had a uniform distribution.

  • PDF

A Review on Atmospheric Correction Technique Using Satellite Remote Sensing (인공위성 원격탐사를 이용한 대기보정 기술 고찰)

  • Lee, Kwon-Ho;Yum, Jong-Min
    • Korean Journal of Remote Sensing
    • /
    • v.35 no.6_1
    • /
    • pp.1011-1030
    • /
    • 2019
  • Remote sensing sensors used in satellites or aircrafts measure electromagnetic waves passing through the earth's atmosphere, and thus the information on the surface of the earth is affected as it is absorbed or scattered by the earth's atmosphere. Although satellites have different wavelength ranges and resolutions depending on the purpose of onboard sensors, in general, atmospheric correction must be made to remove the influence of the atmosphere in order to accurately measure the spectral signal of an object on the earth's surface. The purpose of atmospheric correction is to remove the atmospheric effect from remote sensing images to determine surface reflectivity values and to derive physical parameters of the surface. Until recently, atmospheric correction algorithms have evolved from image-based empirical methods or indirect methods using in-situ observation data to direct methods that numerically interpret more complex radiative transfer processes. This study analyzes the research records of atmospheric correction algorithms developed over the past 40 years, systematically establishes the current state of atmospheric correction technology and the results of major atmospheric correction algorithms and presents the current status and research trends of related technologies.

Visibility Enhancement of Underwater Stereo Images Using Depth Image (깊이 영상을 이용한 수중 스테레오 영상의 가시성 개선)

  • Shin, Hyoung-Chul;Kim, Sang-Hoon;Sohn, Kwang-Hoon
    • Journal of Broadcast Engineering
    • /
    • v.17 no.4
    • /
    • pp.684-694
    • /
    • 2012
  • In the underwater environment, light is absorbed and scattered by water and floating particles, which makes the underwater images suffer from color degradation and limited visibility. Physically, the amount of the scattered light transmitted to the image is proportional to the distance between the camera and the object. In this paper, the proposed visibility enhancement. method utilizes depth images to estimate the light transmission and the degradation factor by the scattered light. To recover the scatter-free images without unnatural artifacts, the proposed method normalizes the degradation factor based on the value of each pixel of the image. Finally, the scatter-free images are obtained by removing the scattered components on the image according to the estimated transmission. The proposed method also considers the color discrepancies of underwater stereo images so that the stereo images have the same color appearance after the visibility enhancement. The experimental results show that the proposed method improves the color contrast more than 5% to 14% depending on the experimental images.

Development of lidar detection system for improvement of measurement range (Combined photon counting detection and analog-to-digital signal) (라이다 측정 거리 향상을 위한 통합 수신 시스템 개발 (아날로그방식과 광자계수방식 신호 접합))

  • Shin, Dong Ho;Noh, Young Min;Shin, Sung Kyun;Kim, Young J.
    • Korean Journal of Remote Sensing
    • /
    • v.30 no.2
    • /
    • pp.251-258
    • /
    • 2014
  • We upgraded to utilize a novel method for combining the analog to digital converter and photon-counting measurements for backscatter photon signal of lidar. We have and improve the standard combining method for determination of those conversion factors between analog to digital converter data and photon-counting data measurement which is conducted dead time correction. The combining method and dead time correction method presented here has been successfully applied to experimental data obtained in Gwangju, Korea.

Analysis of Effect of Fuel Additive on Soot Suppression Using Laser Scattering Technique (광 산란 기술을 이용한 연료 첨가제의 그을음 억제 효과 분석)

  • Seo, Hyoungseock;Kim, Kibum
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.17 no.7
    • /
    • pp.204-210
    • /
    • 2016
  • This paper presents an experimental analysis of the growth and oxidation processes of soot particles generated in an isooctane diffusive laminar flame due to incomplete combustion. The effects of iron-based diagnostics were employed to measure the elastic scattering light from soot particles in a flame at different flame heights, and the differential scattering coefficients were calculated through a calibration process. The growth and oxidation of soot particles in flame was investigated by comparing differential scattering coefficients, and the soot volume fraction was seen to decrease in the soot oxidation process. In the same manner, the differential scattering coefficients were calculated for iron-based fuel-additive seeded flame, and these coefficients were revealed to be smaller than those obtained in the fuel-additive unseeded flame. In addition, transmission through the radial direction of the flame was measured, and transmission in the soot oxidation regime was approximately 5% higher for the seeded flame. The propensity of the data coincided well with the differential scattering coefficients, and it can be concluded that the iron component of the fuel additive plays a crucial role as a catalyst, which eventually enhanced soot particle oxidation.