DOI QR코드

DOI QR Code

Development of lidar detection system for improvement of measurement range (Combined photon counting detection and analog-to-digital signal)

라이다 측정 거리 향상을 위한 통합 수신 시스템 개발 (아날로그방식과 광자계수방식 신호 접합)

  • Shin, Dong Ho (School of Environmental Science & Engineering, Gwangju Institute of Science and Technology (GIST)) ;
  • Noh, Young Min (School of Environmental Science & Engineering, Gwangju Institute of Science and Technology (GIST)) ;
  • Shin, Sung Kyun (School of Environmental Science & Engineering, Gwangju Institute of Science and Technology (GIST)) ;
  • Kim, Young J. (School of Environmental Science & Engineering, Gwangju Institute of Science and Technology (GIST))
  • 신동호 (광주과학기술원 환경공학부) ;
  • 노영민 (광주과학기술원 환경공학부) ;
  • 신성균 (광주과학기술원 환경공학부) ;
  • 김영준 (광주과학기술원 환경공학부)
  • Received : 2014.02.27
  • Accepted : 2014.03.13
  • Published : 2014.04.30

Abstract

We upgraded to utilize a novel method for combining the analog to digital converter and photon-counting measurements for backscatter photon signal of lidar. We have and improve the standard combining method for determination of those conversion factors between analog to digital converter data and photon-counting data measurement which is conducted dead time correction. The combining method and dead time correction method presented here has been successfully applied to experimental data obtained in Gwangju, Korea.

본 연구는 에어로졸의 광학적 특성 분석을 위한 라이다 시스템의 정확성 향상을 위해 새롭게 개발한 신호 수신 시스템을 설명하고자 한다. 광주과학기술원의 라이다에 아날로그 방식과 광자계수 방식을 통합한 시스템을 활용하여 에어로졸 후방산란 신호를 동시에 관측 가능한 수신단을 개발하였다. 관측된 두 신호 결합을 위해 접합 알고리즘을 고안하였고, 신호 결합에 앞서 광자계수 방식 신호의 Pile up효과를 보정하기 위해 부동시간(Dead time)을 계산하여 보정하였다. 관측 신호 분석을 통해 아날로그 방식 신호, 광자계수 방식 신호, 접합신호 그리고 부동시간 보정에 따른 차이점을 설명하고, 최종적으로 에어로졸 후방산란계수를 산출하여 상호 비교 및 정확성 향상을 확인하였다.

Keywords

References

  1. Althausen, D., R. Engelmann, H. Baars, B. Heese, A. Ansmann, D. Muller, and M. Komppula, 2009. Portable Raman lidar PollyXT for automated profiling of aerosol backscatter, extinction, and depolarization, Journal of Atmospheric and Oceanic Technology, 26: 2366-2378. https://doi.org/10.1175/2009JTECHA1304.1
  2. Althausen, D., D. Muller, A. Ansmann, U. Wandinger, H. Hube, E. Clauder, and S. Z?rner, 2000. Scanning 6-wavelength 11-channel aerosol lidar, Journal of Atmospheric and Oceanic Technology, 17: 1469-1482. https://doi.org/10.1175/1520-0426(2000)017<1469:SWCAL>2.0.CO;2
  3. Ansmann, A., M. Riebesell, U. Wandinger, C. Weitkamp, E. Voss, W. Lahmann, and W. Michaelis, 1992. Combined Raman elasticbackscatter lidar for vertical profiling of moisture, aerosol extinction, backscatter, and lidar ratio, Applied Physics B, 55: 18-28. https://doi.org/10.1007/BF00348608
  4. Ansmann, A., M. Riebesell, and C. Weitkamp, 1990. Measurement of atmospheric aerosol extinction profiles with a Raman lidar. Optics Letters, 15: 746-748. https://doi.org/10.1364/OL.15.000746
  5. Donovan, D., J. Whiteway, and A.I. Carswell, 1993. Correction for nonlinear photon-counting effects in lidar systems. Applied optics, 32: 6742-6753. https://doi.org/10.1364/AO.32.006742
  6. Muller, D., A. Ansmann, I. Mattis, M. Tesche, U. Wandinger, D. Althausen, and G. Pisani, 2007a. Aerosol-type-dependent lidar ratios observed with Raman lidar, Journal of Geophysical Research: Atmospheres (1984-2012), 112(D16).
  7. Muller, D., I. Mattis, A. Ansmann, U. Wandinger, C. Ritter, and D. Kaiser, 2007b. Multiwavelength Raman lidar observations of particle growth during long-range transport of forest-fire smoke in the free troposphere, Geophysical Research Letters, 34: L05803.
  8. Mitev, V., R. Matthey, J.P. do Carmo, and G. Ulbrich, 2005. Signal-to-noise ratio of pseudo-random noise continuous wave backscatter lidar with analog detection, Proc. of SPIE 5984, Lidar Technologies, Techniques, and Measurements for Atmospheric Remote Sensing, 598404 (October 31, 2005); doi:10.1117/12.627638.
  9. Murayama, T., D. Muller, K. Wada, A. Shimizu, M. Sekiguchi, and T. Tsukamoto, 2004. Characterization of Asian dust and Siberian smoke with multi-wavelength Raman lidar over Tokyo, Japan in spring 2003, Geophysical Research Letters, 31(23): DOI: 10.1029/2004GL021105.
  10. Noh, Y.M., D. Muller, D.H. Shin, H. Lee, J.S. Jung, K.H. Lee, M. Cribb, Z. Li, and Y.J. Kim, 2009. Optical and microphysical properties of severe haze and smoke aerosol measured by integrated remote sensing techniques in Gwangju, Korea, Atmospheric Environment, 43: 879-888. https://doi.org/10.1016/j.atmosenv.2008.10.058
  11. Ramanathan, V., and G. Carmichael, 2008. Global and regional climate changes due to black carbon, Nature Geoscience, 1: 221-227. https://doi.org/10.1038/ngeo156
  12. Schatzel, K., 1986. Dead time correction of photon correlation functions, Applied Physics B, 41: 95-102.
  13. Sharma, A., V. Sivakumar, C. Bollig, C. Van der Westhuizen, and D. Moema, 2009. System description of the mobile LIDAR of the CSIR, South Africa. South African Journal of Science, 105: 456-462.
  14. Sharma, A., and J. Walker, 1992. Paralyzable and nonparalyzable deadtime analysis in spatial photon counting, Review of Scientific Instruments, 63: 5784-5793. https://doi.org/10.1063/1.1143364
  15. Susan, S., 2007. Climate change 2007-the physical science basis: Working group I contribution to the fourth assessment report of the IPCC, Cambridge University Press.
  16. Whiteman, D., S. Melfi, and R. Ferrare, 1992. Raman lidar system for the measurement of water vapor and aerosols in the Earth's atmosphere, Applied Optics, 31: 3068-3082. https://doi.org/10.1364/AO.31.003068
  17. Whiteman, D.N., 2003. Examination of the traditional Raman lidar technique. I. Evaluating the temperature-dependent lidar equations, Applied Optics, 42: 2571-2592. https://doi.org/10.1364/AO.42.002571
  18. Shin, D.H., Y.M. Noh, K.H. Lee, E.S. Jang, S.K. Shin, and Y.J. Kim, 2013. Development of stratospheric Lidar for observation of volcano aerosols, Korean Journal of Remote Sensing, 29(5): 581-588 (In Korean with English abstract). https://doi.org/10.7780/kjrs.2013.29.5.13

Cited by

  1. Urbanization and Quality of Stormwater Runoff: Remote Sensing Measurements of Land Cover in an Arid City vol.30, pp.3, 2014, https://doi.org/10.7780/kjrs.2014.30.3.6