• Title/Summary/Keyword: 사회적연결망

Search Result 386, Processing Time 0.026 seconds

An Analysis on the Research Network Structure of Convergence Technologies in Government-sponsored Research Institutes (출연연구기관 융합기술 연구네트워크 구조 분석)

  • Kim, Hongyoung;Chung, Sunyang
    • Journal of Korea Technology Innovation Society
    • /
    • v.18 no.4
    • /
    • pp.693-718
    • /
    • 2015
  • This paper examines the presence of network structures among convergence technologies focusing on national R&D projects performed by GRIs(Government-sponsored Research Institutes) in Korea. The dataset of convergence technology projects, which were conducted by 24 GRIs over 3 years (2011-2013), are analysed using the network analysis method. In this paper, a convergence technology project is defined as a project that consists of 2 or more then 2 technologies according to the intermediate classification of National Standard Classification of S&T. The research results confirm that convergence researches of government-sponsored research institutes are performed more actively than the entire convergence researches of national R&D projects. Furthermore, technological fields of GRIs' convergence projects are found to be much more varied. This paper also shows that in-house researches are more active than collaborative ones with external organizations. According to the network centrality analysis, it is identified that the network central characteristics of convergence technologies can be classified into internally oriented technologies and externally oriented technologies. Convergence technologies do not just mean simple mixture of different technologies. Therefore Korean government-sponsored research institutes should make more efforts to create convergence research areas which could generate new technologies and industries more effectively than simple multidisciplinary technology researches. From this perspective, some policy suggestions can be derived on the role of government-sponsored research institutes for activating convergence researches through the analysis of status of convergence researches and networks of institutions.

A study on the User Experience at Unmanned Checkout Counter Using Big Data Analysis (빅데이터 분석을 통한 무인계산대 사용자 경험에 관한 연구)

  • Kim, Ae-sook;Jung, Sun-mi;Ryu, Gi-hwan;Kim, Hee-young
    • The Journal of the Convergence on Culture Technology
    • /
    • v.8 no.2
    • /
    • pp.343-348
    • /
    • 2022
  • This study aims to analyze the user experience of unmanned checkout counters perceived by consumers using SNS big data. For this study, blogs, news, intellectuals, cafes, intellectuals (tips), and web documents were analyzed on Naver and Daum, and 'unmanned checkpoints' were used as keywords for data search. The data analysis period was selected as two years from January 1, 2020 to December 31, 2021. For data collection and analysis, frequency and matrix data were extracted through Textom, and network analysis and visualization analysis were conducted using the NetDraw function of the UCINET 6 program. As a result, the perception of the checkout counter was clustered into accessibility, usability, continuous use intention, and others according to the definition of consumers' experience factors. From a supplier's point of view, if unmanned checkpoints spread indiscriminately to solve the problem of raising the minimum wage and shortening working hours, a bigger employment problem will arise from a social point of view. In addition, institutionalization is needed to supply easy and convenient unmanned checkout counters for the elderly and younger generations, children, and foreigners who are not familiar with unmanned calculation.

The Research on Recommender for New Customers Using Collaborative Filtering and Social Network Analysis (협력필터링과 사회연결망을 이용한 신규고객 추천방법에 대한 연구)

  • Shin, Chang-Hoon;Lee, Ji-Won;Yang, Han-Na;Choi, Il Young
    • Journal of Intelligence and Information Systems
    • /
    • v.18 no.4
    • /
    • pp.19-42
    • /
    • 2012
  • Consumer consumption patterns are shifting rapidly as buyers migrate from offline markets to e-commerce routes, such as shopping channels on TV and internet shopping malls. In the offline markets consumers go shopping, see the shopping items, and choose from them. Recently consumers tend towards buying at shopping sites free from time and place. However, as e-commerce markets continue to expand, customers are complaining that it is becoming a bigger hassle to shop online. In the online shopping, shoppers have very limited information on the products. The delivered products can be different from what they have wanted. This case results to purchase cancellation. Because these things happen frequently, they are likely to refer to the consumer reviews and companies should be concerned about consumer's voice. E-commerce is a very important marketing tool for suppliers. It can recommend products to customers and connect them directly with suppliers with just a click of a button. The recommender system is being studied in various ways. Some of the more prominent ones include recommendation based on best-seller and demographics, contents filtering, and collaborative filtering. However, these systems all share two weaknesses : they cannot recommend products to consumers on a personal level, and they cannot recommend products to new consumers with no buying history. To fix these problems, we can use the information which has been collected from the questionnaires about their demographics and preference ratings. But, consumers feel these questionnaires are a burden and are unlikely to provide correct information. This study investigates combining collaborative filtering with the centrality of social network analysis. This centrality measure provides the information to infer the preference of new consumers from the shopping history of existing and previous ones. While the past researches had focused on the existing consumers with similar shopping patterns, this study tried to improve the accuracy of recommendation with all shopping information, which included not only similar shopping patterns but also dissimilar ones. Data used in this study, Movie Lens' data, was made by Group Lens research Project Team at University of Minnesota to recommend movies with a collaborative filtering technique. This data was built from the questionnaires of 943 respondents which gave the information on the preference ratings on 1,684 movies. Total data of 100,000 was organized by time, with initial data of 50,000 being existing customers and the latter 50,000 being new customers. The proposed recommender system consists of three systems : [+] group recommender system, [-] group recommender system, and integrated recommender system. [+] group recommender system looks at customers with similar buying patterns as 'neighbors', whereas [-] group recommender system looks at customers with opposite buying patterns as 'contraries'. Integrated recommender system uses both of the aforementioned recommender systems to recommend movies that both recommender systems pick. The study of three systems allows us to find the most suitable recommender system that will optimize accuracy and customer satisfaction. Our analysis showed that integrated recommender system is the best solution among the three systems studied, followed by [-] group recommended system and [+] group recommender system. This result conforms to the intuition that the accuracy of recommendation can be improved using all the relevant information. We provided contour maps and graphs to easily compare the accuracy of each recommender system. Although we saw improvement on accuracy with the integrated recommender system, we must remember that this research is based on static data with no live customers. In other words, consumers did not see the movies actually recommended from the system. Also, this recommendation system may not work well with products other than movies. Thus, it is important to note that recommendation systems need particular calibration for specific product/customer types.

A Time Series Analysis of Urban Park Behavior Using Big Data (빅데이터를 활용한 도시공원 이용행태 특성의 시계열 분석)

  • Woo, Kyung-Sook;Suh, Joo-Hwan
    • Journal of the Korean Institute of Landscape Architecture
    • /
    • v.48 no.1
    • /
    • pp.35-45
    • /
    • 2020
  • This study focused on the park as a space to support the behavior of urban citizens in modern society. Modern city parks are not spaces that play a specific role but are used by many people, so their function and meaning may change depending on the user's behavior. In addition, current online data may determine the selection of parks to visit or the usage of parks. Therefore, this study analyzed the change of behavior in Yeouido Park, Yeouido Hangang Park, and Yangjae Citizen's Forest from 2000 to 2018 by utilizing a time series analysis. The analysis method used Big Data techniques such as text mining and social network analysis. The summary of the study is as follows. The usage behavior of Yeouido Park has changed over time to "Ride" (Dynamic Behavior) for the first period (I), "Take" (Information Communication Service Behavior) for the second period (II), "See" (Communicative Behavior) for the third period (III), and "Eat" (Energy Source Behavior) for the fourth period (IV). In the case of Yangjae Citizens' Forest, the usage behavior has changed over time to "Walk" (Dynamic Behavior) for the first, second, and third periods (I), (II), (III) and "Play" (Dynamic Behavior) for the fourth period (IV). Looking at the factors affecting behavior, Yeouido Park was had various factors related to sports, leisure, culture, art, and spare time compared to Yangjae Citizens' Forest. The differences in Yangjae Citizens' Forest that affected its main usage behavior were various elements of natural resources. Second, the behavior of the target areas was found to be focused on certain main behaviors over time and played a role in selecting or limiting future behaviors. These results indicate that the space and facilities of the target areas had not been utilized evenly, as various behaviors have not occurred, however, a certain main behavior has appeared in the target areas. This study has great significance in that it analyzes the usage of urban parks using Big Data techniques, and determined that urban parks are transformed into play spaces where consumption progressed beyond the role of rest and walking. The behavior occurring in modern urban parks is changing in quantity and content. Therefore, through various types of discussions based on the results of the behavior collected through Big Data, we can better understand how citizens are using city parks. This study found that the behavior associated with static behavior in both parks had a great impact on other behaviors.

Multi-level Analysis of the Antecedents of Knowledge Transfer: Integration of Social Capital Theory and Social Network Theory (지식이전 선행요인에 관한 다차원 분석: 사회적 자본 이론과 사회연결망 이론의 결합)

  • Kang, Minhyung;Hau, Yong Sauk
    • Asia pacific journal of information systems
    • /
    • v.22 no.3
    • /
    • pp.75-97
    • /
    • 2012
  • Knowledge residing in the heads of employees has always been regarded as one of the most critical resources within a firm. However, many tries to facilitate knowledge transfer among employees has been unsuccessful because of the motivational and cognitive problems between the knowledge source and the recipient. Social capital, which is defined as "the sum of the actual and potential resources embedded within, available through, derived from the network of relationships possessed by an individual or social unit [Nahapiet and Ghoshal, 1998]," is suggested to resolve these motivational and cognitive problems of knowledge transfer. In Social capital theory, there are two research streams. One insists that social capital strengthens group solidarity and brings up cooperative behaviors among group members, such as voluntary help to colleagues. Therefore, social capital can motivate an expert to transfer his/her knowledge to a colleague in need without any direct reward. The other stream insists that social capital provides an access to various resources that the owner of social capital doesn't possess directly. In knowledge transfer context, an employee with social capital can access and learn much knowledge from his/her colleagues. Therefore, social capital provides benefits to both the knowledge source and the recipient in different ways. However, prior research on knowledge transfer and social capital is mostly limited to either of the research stream of social capital and covered only the knowledge source's or the knowledge recipient's perspective. Social network theory which focuses on the structural dimension of social capital provides clear explanation about the in-depth mechanisms of social capital's two different benefits. 'Strong tie' builds up identification, trust, and emotional attachment between the knowledge source and the recipient; therefore, it motivates the knowledge source to transfer his/her knowledge to the recipient. On the other hand, 'weak tie' easily expands to 'diverse' knowledge sources because it does not take much effort to manage. Therefore, the real value of 'weak tie' comes from the 'diverse network structure,' not the 'weak tie' itself. It implies that the two different perspectives on strength of ties can co-exist. For example, an extroverted employee can manage many 'strong' ties with 'various' colleagues. In this regards, the individual-level structure of one's relationships as well as the dyadic-level relationship should be considered together to provide a holistic view of social capital. In addition, interaction effect between individual-level characteristics and dyadic-level characteristics can be examined, too. Based on these arguments, this study has following research questions. (1) How does the social capital of the knowledge source and the recipient influence knowledge transfer respectively? (2) How does the strength of ties between the knowledge source and the recipient influence knowledge transfer? (3) How does the social capital of the knowledge source and the recipient influence the effect of the strength of ties between the knowledge source and the recipient on knowledge transfer? Based on Social capital theory and Social network theory, a multi-level research model is developed to consider both the individual-level social capital of the knowledge source and the recipient and the dyadic-level strength of relationship between the knowledge source and the recipient. 'Cross-classified random effect model,' one of the multi-level analysis methods, is adopted to analyze the survey responses from 337 R&D employees. The results of analysis provide several findings. First, among three dimensions of the knowledge source's social capital, network centrality (i.e., structural dimension) shows the significant direct effect on knowledge transfer. On the other hand, the knowledge recipient's network centrality is not influential. Instead, it strengthens the influence of the strength of ties between the knowledge source and the recipient on knowledge transfer. It means that the knowledge source's network centrality does not directly increase knowledge transfer. Instead, by providing access to various knowledge sources, the network centrality provides only the context where the strong tie between the knowledge source and the recipient leads to effective knowledge transfer. In short, network centrality has indirect effect on knowledge transfer from the knowledge recipient's perspective, while it has direct effect from the knowledge source's perspective. This is the most important contribution of this research. In addition, contrary to the research hypothesis, company tenure of the knowledge recipient negatively influences knowledge transfer. It means that experienced employees do not look for new knowledge and stick to their own knowledge. This is also an interesting result. One of the possible reasons is the hierarchical culture of Korea, such as a fear of losing face in front of subordinates. In a research methodology perspective, multi-level analysis adopted in this study seems to be very promising in management research area which has a multi-level data structure, such as employee-team-department-company. In addition, social network analysis is also a promising research approach with an exploding availability of online social network data.

  • PDF

Analysis of Behavior of Seoullo 7017 Visitors - With a Focus on Text Mining and Social Network Analysis - (서울로 7017 방문자들의 이용행태 분석 -텍스트 마이닝과 소셜 네트워크 분석을 중심으로-)

  • Woo, Kyung-Sook;Suh, Joo-Hwan
    • Journal of the Korean Institute of Landscape Architecture
    • /
    • v.48 no.6
    • /
    • pp.16-24
    • /
    • 2020
  • The purpose of this study is to analyze the usage behavior of Seoullo 7017, the first public garden in Korea, to understand the usage status by analyzing blogs, and to present usage behavior and improvement plans for Seoullo 7017. From June 2017 to May 2020, after Seoullo 7017 was open to citizens, character data containing 'Seoullo 7017' in the title and contents of NAVER and·DAUM blogs were converted to text mining and socialization, a Big Data technique. The analysis was conducted using social network analysis. The summary of the research results is as follows. First of all, the ratio of men and women searching for Seoullo 7017 online is similar, and the regions that searched most are in the order of Seoul and Gyeonggi, and those in their 40s and 50s were the most interested. In other words, it can be seen that there is a lack of interest in regions other than Seoul and Gyeonggi and among those in their 10s, 20s, and 30s. The main behaviors of Seoullo 7017 are' night view' and 'walking', and the factors that affect culture and art are elements related to culture and art. If various programs and festivals are opened and actively promoted, the main behavior will be more varied. On the other hand, the main behavior that the users of Seoullo 7017 want is 'sit', which is a static behavior, but the physical conditions are not sufficient for the behavior to occur. Therefore, facilities that can cause sitting behavior, such as shades and benches must be improved to meet the needs of visitors. The peculiarity of the change in the behavior of Seoullo 7017 is that it is recognized as a good place to travel alone and a good place to walk alone as a public multi-use facility and group activities are restricted due to COVID-19. Accordingly, in a situation like the COVD-19 pandemic, more diverse behaviors can be derived in facilities where people can take a walk, etc., and the increase of various attractions and the satisfaction of users can be increased. Seoullo 7017, as Korea's first public pedestrian area, was created for urban regeneration and the efficient use of urban resources in areas beyond the meaning of public spaces and is a place with various values such as history, nature, welfare, culture, and tourism. However, as a result of the use behavior analysis, various behaviors did not occur in Seoullo 7017 as expected, and elements that hinder those major behaviors were derived. Based on these research results, it is necessary to understand the usage behavior of Seoullo 7017 and to establish a plan for spatial system and facility improvement, so that Seoullo 7017 can be an important place for urban residents and a driving force to revitalize the city.