• Title/Summary/Keyword: 사출조건

Search Result 247, Processing Time 0.025 seconds

The Effects of Molding Conditions on the Surface Gloss of ABS Molding (ABS(Acrylonitrile-Butadiene-Styrene) 성형품의 성형조건이 표면 광택에 미치는 영향)

  • Jeong, Yeong-Deug;Hwang, Si-Hyon;Lee, Mi-Hye
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.16 no.4 s.97
    • /
    • pp.110-115
    • /
    • 1999
  • The surface gloss of an injection molded part is one of the most significant point for evaluating the quality of products appearance. The effects of process condition on the gloss of ABS(Acrylonitrile-Butadiene-Styrene) molded part were investigated in this work. The measurements of gloss and morphology on the surface of molded part were carried out with different melt temperature, mold temperature, mold surface roughness, injection pressure and holding pressure. Gloss had a maximum value with melt temperature in the range of 210 to 220 ${^\circ}C$ and with mold temperature 40 to 50${^\circ}C$ and with injection pressure 80~90 MPa, respectively. Melt temperature was shown to have the largest effect on gloss in our work. Gloss was not improved in the region of melt temperature 240${^\circ}C$ above and of mold temperature 60${^\circ}C$ above. It was concluded that the variation of gloss was mainly caused by rubber particles migration under shear stress not by their aggregation or necklace.

  • PDF

A study on yellowing property of LGP under various injection molding conditions (사출성형 조건 변화에 따른 도광판의 황화현산에 관한 연구)

  • Lee, Sung-Jun;Min, In-Ki;Kim, Jong-Sun;Lee, Sung-Hee;Yoon, Kyung-Hwan
    • Design & Manufacturing
    • /
    • v.9 no.2
    • /
    • pp.20-24
    • /
    • 2015
  • Recently, the light guide plate (LGP), a component of the BLU, becomes thinner and larger than ever. In industrial field, specialized injection molding technique is applied to mold the ultra-thin LGP such as a ultra-high speed injection molding. Usually very high melt temperature is used for low viscosity. High injection speed and melt temperature lead to yellowing of LGP. In the present paper a series of injection molding experiment was performed under various injection molding conditions. Yellow index, CIE xy, spectral transmittance of sample were measured using the UV-Visible spectrophotometer. Systematic decrease of spectral transmittance in UV-B range was found as the melt temperature was higher. Yellow index and CIE xy were became higher near the gate location in LGP. From the result of analysis of variance, the main factor to affect for yellow index was mold temperature and that for spectral transmittance(at 315 nm) was melt temperature.

  • PDF

Real-time Rebar Injection Endpoints Tracking Method to Improve the Straightness of Rebars (철근 직진도 개선을 위한 실시간 철근 사출 끝점 추적 방법)

  • Kim, Jong-Sik;Kang, Dae-Seong
    • The Journal of Korean Institute of Information Technology
    • /
    • v.17 no.8
    • /
    • pp.75-83
    • /
    • 2019
  • In this paper, we propose a method that can detect and trace the end point of real - time reinforcement steel to various environmental conditions of industrial field by using Median flow and Depth information. We proposed a method to derive two steel end points by using Median filter, Binarization, Morphology, and Blob algorithm on image depth information. The coordinates of the final position were determined by comparing the coordinates of the reinforcement steel endpoints detected in the Depth image and the position tracking coordinates of the reinforcement steel using Median Flow. As a result, when the existing Median Flow method was used, the success rate of the final position determination of reinforcement steel of 75% was increased to 95% when the Depth of reinforcement steel was used.

A study on the prediction of optimized injection molding conditions and the feature selection using the Artificial Neural Network(ANN) (인공신경망을 통한 사출 성형조건의 최적화 예측 및 특성 선택에 관한 연구)

  • Yang, Dong-Cheol;Kim, Jong-Sun
    • Design & Manufacturing
    • /
    • v.16 no.3
    • /
    • pp.50-57
    • /
    • 2022
  • The qualities of the products produced by injection molding are strongly influenced by the process variables of the injection molding machine set by the engineer. It is very difficult to predict the qualities of the injection molded product considering the stochastic nature of the manufacturing process, since the processing conditions have a complex impact on the quality of the injection molded product. It is recognized that the artificial neural network(ANN) is capable of mapping the intricate relationship between the input and output variables very accurately, therefore, many studies are being conducted to predict the relationship between the results of the product and the process variables using ANN. However in the condition of a small number of data sets, the predicting performance and robustness of the ANN model could be reduced due to too many input variables. In the present study, the ANN model that predicts the length of the injection molded product for multiple combinations of process variables was developed. And the accuracy of each ANN model was compared for 8 process variables and 4 important process inputs that were determined by the feature selection. Based on the comparison, it was verified that the performance of the ANN model increased when only 4 important variables were applied.

Effect of High-Temperature Sintering Condition on Microstructure Evolution of Pure-Cu Subjected to Metal Injection Molding (금속분말 사출성형된 순-구리의 미세조직에 미치는 고온 소결조건의 영향)

  • Han, D.I.;Suhartono, T.;Kim, D.J.;Lee, E.H.;Kim, J.H.;Ko, Y.G.
    • Transactions of Materials Processing
    • /
    • v.31 no.4
    • /
    • pp.240-245
    • /
    • 2022
  • In this study, to achieve good electrical conductivity of a charging terminal component in electric vehicles, we investigated the microstructure evolution of pure-Cu subjected to metal injection molding by controlling the sintering variables, such as temperature and time. Thus, three samples were sintered at temperatures ranging from 1000 ℃ to 1050 ℃ near to the melting temperature of 1085 ℃ for 1 and 10 h after thermal evaporation of binder at 730 ℃. Both procedures were made using a unified furnace under Ar+H2 gas with high purity. The structural observation displayed that the grain size as well as the compactness (a reciprocal of porosity) increased simultaneously as temperature and time increased. This gave rise to high thermal conductivity of 90% IACS together with high density, which was mainly attributed to decrease in fractions of grain boundaries and micro-pores working as effective scattering center for electron movement.

A Study on Injection Condition Optimization and Deformation Improvement using Taguchi Design of Experiments (다구찌 실험계획법을 이용한 사출 조건 최적화와 변형 개선에 대한 연구)

  • Young-Tae Yu;Sung-Min Mun;Sung-Young Jun;Kyoung-A Kim
    • Design & Manufacturing
    • /
    • v.17 no.2
    • /
    • pp.62-69
    • /
    • 2023
  • In this study, we conducted a study on the optimization of injection molding conditions to minimize deformation of plastic product. The charging management system housing of the vehicle was selected as the research subject. Melting temperature, cooling temperature, packing time, and packing pressure were selected as the main factors expected to affect the deformation of molded products. Each main factor was divided into 5 levels. Optimization of injection molding conditions to minimize deformation was performed using the Taguchi Method. We performed an analysis of variance (ANOVA) to identify significant factors affecting the deformation of plastic product. In order to select injection molding conditions that minimize deformation of plastic products, injection molding analysis was additionally performed for insignificant factors. We then compared the deformation of the molded part before and after optimization. As a result of comparing the injection analysis results of the basic conditions and the injection analysis results of the optimal conditions, it was confirmed that the amount of deformation after optimization was improved by about 10.9%.

An Improved Manufacturing Method of p-Dicyclopentadiene (DCPD) using Tungsten Type Catalyst in Air Condition (대기 조건에서 경화가 가능한 텅스텐계 p-DCPD의 개선된 성형 방법)

  • Kwon, Dong-Jun;Shin, Pyeong-Su;Kim, Jong-Hyun;Park, Joung-Man
    • Composites Research
    • /
    • v.29 no.4
    • /
    • pp.216-222
    • /
    • 2016
  • Ring-opening metathesis polymerization of p-dicyclopentadiene (DCPD) can be performed using the tungsten type catalyst. This reaction usually progresses in nitrogen condition, because the catalysts are extremely sensitive in air condition. To solve this problem, DCPD resin with tungsten (W) was cured using hot press after stirring of DCPD A and B liquid in air condition. Mechanical properties of DCPD were improved by reducing microvoid occurrence successfully by using hot press method. It might be because hot press could provide sufficient press on DCPD specimen. Addition of catalyst was not effective for the curing of resin in a short time. During polymerization, pressure and temperature had a great influence on the mechanical properties of DCPD.

Using In Situ Resources and 3D Printing for Space Exploration Habitat Construction (행성탐사를 위한 거주지 건설 연구 : 현지자원 활용과 3D 프린팅 기술을 중심으로)

  • Lee, Jin Young;Lee, Tai Sik
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.40 no.3
    • /
    • pp.337-343
    • /
    • 2020
  • The third phase of NASA's 3D-Printed Habitat Challenge (part of a NASA's Centennial Challenges Program competition) required entrants to build a one-third-scale space exploration habitat (10 ㎡) using 3D-printing technology. This study addresses a proposed habitat (diameter: 3 m, height: 2 m) in accordance with the competition rules. The study focus is to find the most appropriate binder when KOHLS-1 was mixed for extruding and stacking as 3D printing feedstock using pellets, and to build a prototype structure as required by the competition. Unlike previous studies, this study was based around the binders and construction method, not around axis transfer velocity, flow rate, and heater temperature.

Effect of Mouse Leukemia Inhibitory Factor on the Development of In Vitro Produced Pig Embryos (돼지 체외수정란의 발달에 미치는 Mouse Leukemia Inhibitory Factor의 영향)

  • 엄상준;정형민;박진기;이장형;이훈택;정길생
    • Korean Journal of Animal Reproduction
    • /
    • v.18 no.3
    • /
    • pp.207-216
    • /
    • 1994
  • 본 연구는 돼지 난포란으로부터 생산된 수정란의 체외발달에 미치는 아미노산, 우태아혈청 (FBS)과 Leukemia Inhibitry Factor의 영향을 조사하였다. 돼지난포란은 도살된 돼지의 난소로부터 회수하여 39$^{\circ}C$, 5% CO2 배양조건하에서 1$\mu\textrm{g}$/ml FSH-p, 1$\mu\textrm{g}$/ml Estradiol-17$\beta$와 10%FBS가 첨가된 TCM-199 배양액내에서 42시간동안 성숙시켰다. 사출된 정자의 수정능 획득은 45와 90% Percoll density gradient법을 통한 원심분리에 의해 얻었으며, 이들 수정능획득된 정자를 성숙된 난포란이 함유된 배양액에 3$\times$105/ml의 농도로 주입하여 10$\pm$1시간동안 배양함으로서 체외수정을 유도하였다. 수정된 난포란은 ; 1) 10% FBS가 함유된 TCM-199, DMEM, mKRB 또는 CR1aa 배양액, 2) 아미노산 또는 10% FBS가 첨가된 CR1 배양액, 3) STO 세포 또는 mLIF (1,000 unit/ml) 첨가된 CR1aa(10%FBS) 배양액, 4) mLIF (1,000 unit/ml)를 수정 직후 또는 8-세포기 이후에 첨가된 CR1aa(10%FBS)의 네가지 배양조건에서 각각 분리 배양하였다. 그결과 체외수정란의 배반포까지 발달율은 아미노산과 10%FBS가 포함된 CR1 배양액에서 다른 배양액에서보다 양호하였고, 특히 8-세포기 이후에 mouse LIF를 첨가한 CR1aa(10% FBS) 배양액에서는 다른 배양조건보다 현저히 높은 결과를 보였으며, 부화 배반포까지도 배발달을 유도할 수 있었다. 따라서 돼지수정란의 발달에 있어서 배양액내에 아미노산과 FBS 및 mouse LIF의 첨가는 효과가 있으며, 특히 8-세포기 이후에 있어서 mouse LIF의 첨가는 돼지의 수정란을 배반포 이후의 단계에까지 발달시킬 수 있었다.

  • PDF

Study on the Insulation Properties of Silicone Rubber (ATH 고충진 실리콘 고무의 절연특성 연구)

  • Kang, Dong-Pil;Park, Hoy-Yul;Ahn, Myeong-Sang;Kim, Dae-Whan;Myung, In-Hae;Lee, Hoo-Bum;Oh, Se-Ho
    • Proceedings of the KIEE Conference
    • /
    • 2003.07c
    • /
    • pp.1442-1444
    • /
    • 2003
  • 폴리머 애자용 shed 재료의 전기방전에 대한 열화내성과 표면이 오염된 조건하에서도 우수한 발수성 유지는 제품의 장기성능에 있어서 가장 중요한 인자들이다. 내트래킹성 확보를 위한 보강재로는 ATH가 주로 사용되고 있으며 ATH의 첨가량이 많을 수록 내트래킹성은 대체로 향상되는 것으로 되어 있다. 그러나 애자 제조시 무결점 성형성의 만족이 대단히 중요하기 때문에 ATH를 고충진하는 경우 사용하는 process oil들의 종류 및 첨가량을 고려한 ATH 첨가량의 최적화는 필요하다. 본 논문에서는 ATH를 170 part로 다량으로 첨가하면서 화학적 구조와 점도가 다른 몇 가지 실리콘 fliud들을 사용하여 무결점 성형에 적합한 가소도를 갖는 컴파운드를 제조하여 기본물성과 초고압 옥외절연물의 shed 재료로서 장기성능에 영향을 주는 방전열화내성과 표면발수성의 회복특성을 평가하였다. 컴파운드의 성형작업성과 관련이 큰 가소도는 fluid 점도에 따라 상당한 차이를 보이므로 실리콘 fluid 종류의 선택과 첨가량의 최적화에는 성형작업성, 발수성 회복특성, 열화내성 등의 고려가 필요하다. 무결점 애자성형을 위한 진공 사출에서 고무 컴파운드의 가소도가 중요한데 동일한 ATH첨가조건에서 일정한 가소도를 갖게 하는데 필요한 양은 fluid들의 종류에 따라서 상당한 차이가 있었다. 코로나 처리후 발수성 회복특성은 fluid들의 분자크기와 반응기의 종류에 따라 상당히 영향을 받았으며 분자가 클수록 초기회복속도는 다소 느렸지만 평상시에 늘 유지되는 상시발수성은 다소 높게 유지되었다. 아크와 트래킹 방전에 의한 무게 감소는 ATH가 과량으로 첨가되어 상당히 적었으며 fluid의 분자가 크면서 페닐기를 가진 fluid들이 첨가된 고무가 우수한 특성을 보였다.

  • PDF