• Title/Summary/Keyword: 사전배경정보

Search Result 103, Processing Time 0.038 seconds

Fast Frame Jitter Matching for Image Sequence (영상 시퀀스의 프레임 지터 고속 정합 알고리즘)

  • Lee, Im-Geun;Woo, Young-Woon;Han, Soo-Whan
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2007.10a
    • /
    • pp.973-976
    • /
    • 2007
  • 본 논문에서는 영상 시퀀스 내의 흔들림을 제거하는 고속 알고리즘을 제안한다. 프레임 지터 제거에 관한 연구는 영상 취득과정에서 발생하는 손떨림에 의한 영향을 제거하거나 오래된 영화필름에서 녹화장치의 기구적인 문제로 인해 발생한 흔들림을 제거하기 위해 많이 연구되었다. 제안하는 알고리즘은 영상 프레임을 배경과 전경 영역으로 나누고 움직임 벡터를 이용하여 천역 움직임을 구한다. 전역 움직임을 구하는 과정에서 잘못된 움직임 예측이 발생할 가능성이 높은 블록을 사전에 제거하여 속도를 개선하였으며 알고리즘을 실제 영상에 적용하여 영상 프레임 정합됨을 보였다.

  • PDF

A Study on The Extraction of the Region and The Recognition of The State of Eyes (눈영역 추출과 개폐상태 인식에 관한 연구)

  • 김도형;이학만;박재현;차의영
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2001.04b
    • /
    • pp.532-534
    • /
    • 2001
  • 본 논문에서는 다양한 배경을 가지는 얼굴 영상에서 눈의 위치를 추출하고 누의 개폐 상태를 인식하는 방법에 대하여 제시한다. 얼굴 요소 중에서 눈은 얼굴 인식 분야에 있어서 주요한 특징을 나타내는 주 요소이며, 눈의 개폐 상태 인식은 인간의 물리적, 생체적 신호 감지 및 표정인식에도 유용하게 사용될 수 있다. 본 논문에서는 후부영역을 강조하기 위한 전처리 과정을 수행하고 템플릿 매칭 방법을 사용하여 후부 영역을 추출한다. 추출된 1차 후부 영역들은 설정된 병합식을 사용하여 병합되며, 기하학적 사전지식과 Matching Value를 기반으로 최종 눈후보 영역을 추출한다. 검출된 눈 후보 영역은 검출영역 전처리와 특징점 산출 과정을 거쳐 최종적으로 개폐 판별식을 통해 눈의 개폐상태를 인식하게 된다. 제안한 방법은 눈위치 추출과 개폐인식에서 모두 높은 인식률을 보였으며 향후 운전자의 졸음인식 및 환자 감시장치 등 여러 응용에서 사용될 수 있다.

  • PDF

A Study of Scaling Methods in Vision-based Real-time Object Tracking (영상 기반 실시간 객체 추적에서 객체 크기 추정 기법에 관한 연구)

  • Kim, Eun-Sol;Choi, Yoo-Joo
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2015.10a
    • /
    • pp.1523-1526
    • /
    • 2015
  • 본 논문에서는 커널 기반 객체 추적 방식을 이용하여 실시간으로 객체를 추적하는 기술에서 객체의 크기 추정에 대한 기존 연구를 비교 분석한다. 커널 기반 객체 추적은 추적하고자 하는 객체를 초기 프레임에서 타켓으로 설정한 후, 각 프레임마다 타켓 후보들을 제시하고 그 중 가장 객체와 유사한 후보에 초점을 맞춰가며 객체를 추적한다. 이때, 목표 객체와 객체 후보간 유사성을 기반으로 정의된 배경 영사 영상(back-projection image)을 이용하여 객체의 크기를 추정하는 방법들이 제시되고 있다. 안정적인 객체 크기 추정 방법의 설계를 위한 사전 연구로서 대표적인 객체 크기 추정 기존 연구를 비교, 분석하고자 한다.

Raindrop Removal and Background Information Recovery in Coastal Wave Video Imagery using Generative Adversarial Networks (적대적생성신경망을 이용한 연안 파랑 비디오 영상에서의 빗방울 제거 및 배경 정보 복원)

  • Huh, Dong;Kim, Jaeil;Kim, Jinah
    • Journal of the Korea Computer Graphics Society
    • /
    • v.25 no.5
    • /
    • pp.1-9
    • /
    • 2019
  • In this paper, we propose a video enhancement method using generative adversarial networks to remove raindrops and restore the background information on the removed region in the coastal wave video imagery distorted by raindrops during rainfall. Two experimental models are implemented: Pix2Pix network widely used for image-to-image translation and Attentive GAN, which is currently performing well for raindrop removal on a single images. The models are trained with a public dataset of paired natural images with and without raindrops and the trained models are evaluated their performance of raindrop removal and background information recovery of rainwater distortion of coastal wave video imagery. In order to improve the performance, we have acquired paired video dataset with and without raindrops at the real coast and conducted transfer learning to the pre-trained models with those new dataset. The performance of fine-tuned models is improved by comparing the results from pre-trained models. The performance is evaluated using the peak signal-to-noise ratio and structural similarity index and the fine-tuned Pix2Pix network by transfer learning shows the best performance to reconstruct distorted coastal wave video imagery by raindrops.

Semi-automatic Event Structure Frame tagging of WordNet Synset (워드넷 신셋에 대한 사건구조 프레임 반자동 태깅)

  • Im, Seohyun
    • Annual Conference on Human and Language Technology
    • /
    • 2018.10a
    • /
    • pp.101-105
    • /
    • 2018
  • 이 논문은 가장 잘 알려진 어휘부중 하나인 워드넷의 활용 범위 확장을 위해 워드넷 신셋에 "사건구조 프레임(Event Structure Frame)"을 주석하는 연구에 관한 것이다. 워드넷을 비롯하여 현재 사용되고 있는 어휘부는 풍부한 어휘의미정보가 구조화되어 있지만, 사건구조에 관한 정보를 포함하고 있지는 않다. 이 연구의 가장 큰 기여는 워드넷에 사건구조 프레임을 추가함으로써 워드넷과의 연결만으로 핵심적인 어휘의미정보를 모두 추출할 수 있도록 해준다는 점이다. 예를 들어 텍스트 추론, 자연어처리, 멀티 모달 태스크 등은 어휘의미정보와 배경지식(상식)을 이용하여 태스크를 수행한다. 워드넷에 대한 사건구조 주석은 자동사건구조 주석 시스템인 GESL을 이용하여 워드넷 신셋에 있는 예문에 먼저 자동 주석을 하고, 오류에 대해 수동 수정을 하는 반자동 방식이다. 사전 정의된 23개의 사건구조 프레임에 따라 예문에 출현하는 타겟 동사를 분류하고, 해당 프레임과 매핑한다. 현재 이 연구는 시작 단계이며, 이 논문에서는 빈도 순위가 가장 높은 100개의 동사와 각 사건구조 프레임별 대표 동사를 포함하여 총 106개의 동사 레마에 대해 실험을 진행하였다. 그 동사들에 대한 전체 워드넷 신셋의 수는 1337개이다. 예문이 없어서 GESL이 적용될 수 없는 신셋을 제외하면 1112개 신셋이다. 이 신셋들에 대해 GESL을 적용한 결과 F-Measure는 73.5%이다. 향후 연구에서는 워드넷-사건구조 링크를 계속 업데이트하면서 딥러닝을 이용해 GESL 성능을 향상 할 수 있는 방법을 모색할 것이다.

  • PDF

Text extraction from camera based document image (카메라 기반 문서영상에서의 문자 추출)

  • 박희주;김진호
    • Journal of Korea Society of Industrial Information Systems
    • /
    • v.8 no.2
    • /
    • pp.14-20
    • /
    • 2003
  • This paper presents a text extraction method of camera based document image. It is more difficult to recognize camera based document image in comparison with scanner based image because of segmentation problem due to variable lighting condition and versatile fonts. Both document binarization and character extraction are important processes to recognize camera based document image. After converting color image into grey level image, gray level normalization is used to extract character region independent of lighting condition and background image. Local adaptive binarization method is then used to extract character from the background after the removal of noise. In this character extraction step, the information of the horizontal and vertical projection and the connected components is used to extract character line, word region and character region. To evaluate the proposed method, we have experimented with documents mixed Hangul, English, symbols and digits of the ETRI database. An encouraging binarization and character extraction results have been obtained.

  • PDF

Extraction of a Central Object in a Color Image Based on Significant Colors (특이 칼라에 기반한 칼라 영상에서의 중심 객체 추출)

  • SungYoung Kim;Eunkyung Lim;MinHwan Kim
    • Journal of Korea Multimedia Society
    • /
    • v.7 no.5
    • /
    • pp.648-657
    • /
    • 2004
  • A method of extracting central objects in color images without any prior-knowledge is proposed in this paper, which uses basically information of significant color distribution. A central object in an image is defined as a set of regions that lie around center of the image and have significant color distribution against the other surround (or background) regions. Significant colors in an image are first defined as the colors that are distributed more densely around center of the image than near borders. Then core object regions (CORs) are selected as the regions a lot of pixels of which have the significant colors. Finally, the adjacent regions to the CORs are iteratively merged if they are similar to the CORs but not to the background regions in color distribution. The merging result is accepted as the central object that may include differently color-characterized regions and/or two or more objects of interest. Usefulness of the significant colors in extracting the central object was verified through experiments on several kinds of test images. We expect that central objects shall be used usefully in image retrieval applications.

  • PDF

A Study on the Correlation between the Appearance Frequency of Author Keyword and the Number of Citation in the Humanities and Social Science Journal Articles of the Korea Citation Index (KCI) (인문학 및 사회과학 분야 국내 학술논문의 저자키워드 출현빈도와 피인용횟수의 상관관계 연구)

  • Ko, Young Man;Song, Min-Sun;Kim, Bee-Yeon;Min, Hye-Ryoung
    • Journal of the Korean Society for information Management
    • /
    • v.30 no.2
    • /
    • pp.227-243
    • /
    • 2013
  • The purpose of this study is to verify the correlation between the appearance frequency of author keyword and the number of citation in journal articles. In this study, we were trying to develop a methodology that can select the term having semantic relation with other terms and higher utilization to build a structured scientific glossary. In order to achieve this purpose, we analyzed the number of citation and the author keyword of the humanities and social science journal articles of the Korea Citation Index (KCI) from 2007 to 2011. This study found a correlation between appearance frequency of author keyword and the number of citation of the journal articles, with higher appearance frequency of author keyword of the journal articles being more cited.

A Survey on Open Source based Large Language Models (오픈 소스 기반의 거대 언어 모델 연구 동향: 서베이)

  • Ha-Young Joo;Hyeontaek Oh;Jinhong Yang
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.16 no.4
    • /
    • pp.193-202
    • /
    • 2023
  • In recent years, the outstanding performance of large language models (LLMs) trained on extensive datasets has become a hot topic. Since studies on LLMs are available on open-source approaches, the ecosystem is expanding rapidly. Models that are task-specific, lightweight, and high-performing are being actively disseminated using additional training techniques using pre-trained LLMs as foundation models. On the other hand, the performance of LLMs for Korean is subpar because English comprises a significant proportion of the training dataset of existing LLMs. Therefore, research is being carried out on Korean-specific LLMs that allow for further learning with Korean language data. This paper identifies trends of open source based LLMs and introduces research on Korean specific large language models; moreover, the applications and limitations of large language models are described.

Multi-modal Image Processing for Improving Recognition Accuracy of Text Data in Images (이미지 내의 텍스트 데이터 인식 정확도 향상을 위한 멀티 모달 이미지 처리 프로세스)

  • Park, Jungeun;Joo, Gyeongdon;Kim, Chulyun
    • Database Research
    • /
    • v.34 no.3
    • /
    • pp.148-158
    • /
    • 2018
  • The optical character recognition (OCR) is a technique to extract and recognize texts from images. It is an important preprocessing step in data analysis since most actual text information is embedded in images. Many OCR engines have high recognition accuracy for images where texts are clearly separable from background, such as white background and black lettering. However, they have low recognition accuracy for images where texts are not easily separable from complex background. To improve this low accuracy problem with complex images, it is necessary to transform the input image to make texts more noticeable. In this paper, we propose a method to segment an input image into text lines to enable OCR engines to recognize each line more efficiently, and to determine the final output by comparing the recognition rates of CLAHE module and Two-step module which distinguish texts from background regions based on image processing techniques. Through thorough experiments comparing with well-known OCR engines, Tesseract and Abbyy, we show that our proposed method have the best recognition accuracy with complex background images.