• Title/Summary/Keyword: 사용자 평가 패턴

Search Result 246, Processing Time 0.025 seconds

A Study on Social media Opinion Mining based Enterprise Crisis Management (소셜 미디어 오피니언 마이닝에 기반한 기업의 위기관리에 관한 연구)

  • Cha, Seun-Joon;Kang, Jae-Woo;Choi, Jae-Hoon
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2012.06c
    • /
    • pp.142-144
    • /
    • 2012
  • 소셜 미디어가 확산되고 사용자가 증가하면서, 사용자들은 소셜 미디어를 통해 의견을 공유한다. 소셜 미디어는 실시간 정보에 대한 전달이 빠르며 데이터를 수집, 분석할 수 있다. 오피니언 마이닝은 텍스트로부터 사용자의 의견이 포함된 패턴을 추출하여 특정 제품이나 서비스에 대한 의견의 긍정, 부정 표현의 정도를 측정한다. 본 논문에서는 오피니언 마이닝을 기반으로 소셜 미디어 데이터에서 기업의 제품, 서비스와 관련된 사용자의 의견을 분석하여 긍정, 부정인지를 판단한다. 그리고 부정 패턴의 빈도를 통해 기업의 위기 상황을 인지하며, 위기 대응을 위한 4단계의 위기관리 모델을 제시한다. 또한 소셜 미디어에서 기업의 위기관리 사례를 확인하고, 표본조사를 통하여 평가 및 분석을 수행한다. 이 모델을 이용하여 방대한 소셜 미디어 데이터에서 기업의 제품이나 서비스에 대한 부정적 의견을 초기에 감지하고, 체계적으로 대응 할 수 있다.

A Model to Infer Users' Behavior Patterns for Personalized Recommendation Service based Context-Awareness (컨텍스트 인식 기반 개인화 추천 서비스를 위한 사용자 행동패턴 추론 모델)

  • Seo, Hyo-Seok;Lee, Sang-Yong
    • Journal of Digital Convergence
    • /
    • v.10 no.2
    • /
    • pp.293-297
    • /
    • 2012
  • In order to provide with personalized recommendation service in context-awareness environment, the collected context data should be analyzed fast and the objective of user should be able to inferred effectively. But, the context collected from the mobile devices is not suitable for applying the existing inference algorithms as they are due to the omission or uncertainty of information and the efficient algorithms are required for mobile environment. In this paper, the behavior pattern was classified using naive bayes classification for minimize the loss caused by the omission or error of information. And pattern matching was used to effectively learn of the users inclination and infer the behavior purpose. The accuracy of the suggested inference model was evaluated by applying to the application recommendation service in the smart phones.

A Collaborative Filtering using SVD on Low-Dimensional Space (SVD을 이용한 저차원 공간에서 협력적 여과)

  • Jung, Jun;Lee, Pil-Kyu
    • The KIPS Transactions:PartB
    • /
    • v.10B no.3
    • /
    • pp.273-280
    • /
    • 2003
  • Recommender System can help users to find products to Purchase. A representative method for recommender systems is collaborative filtering (CF). It predict products that user may like based on a group of similar users. User information is based on user's ratings for products and similarities of users are measured by ratings. As user is increasing tremendously, the performance of the pure collaborative filtering is lowed because of high dimensionality and scarcity of data. We consider the effect of dimension deduction in collaborative filtering to cope with scarcity of data experimentally. We suggest that SVD improves the performance of collaborative filtering in comparison with pure collaborative filtering.

Friend Recommendation Scheme Considering Moving Patterns of Mobile Users (모바일 사용자의 이동 패턴을 고려한 친구 추천 기법)

  • Seo, ki-won;Lim, jong-tae;Bok, kyoung-soo;Yoo, jae-soo
    • Proceedings of the Korea Contents Association Conference
    • /
    • 2015.05a
    • /
    • pp.45-46
    • /
    • 2015
  • 최근 모바일 단말기의 보급과 함께 소셜 네트워크 서비스의 사용자 수가 급격하게 증가하고 있다. 본 논문에서는 사용자에게 의미 없는 장소를 판별하고 새로운 이동 궤적을 생성하여 유사한 사용자를 추천하는 친구 추천 기법을 제안한다. 성능평가를 통해 제안하는 기법이 기존 기법에 비해 성능이 우수함을 보인다.

  • PDF

Influence of Human Typing Pattern Scaling on Neural Network Recognition Performance (휴먼 타이핑 패턴 스케일링의 신경망 인식성능에의 영향)

  • Kwon, Hee-Ju;Bae, Jung-Ki;Kim, Byung-Whan
    • Proceedings of the KIEE Conference
    • /
    • 2007.07a
    • /
    • pp.1803-1804
    • /
    • 2007
  • 개인 사용자의 정보보호를 위한 키보드 타이핑 패턴 인식기를 개발한 바 있었다. 키보드 타이핑 패턴의 스케일링 방식에 따라 신경망 인식기의 성능이 차이가 있을 것이라 기대되어 본 연구에서 이를 수행하였다. 총 3 종류의 방식을 이용하여 스케일링을 하였으며, 그 영향을 인식기의 예측에러, 제 1종과 2정의 인식에러측면에서 분석하고 평가하여 최적의 스케일링 방식을 결정하였다.

  • PDF

Multi Concept Network based on User's Web Usage Data (사용자 웹 사용 정보에 기반한 멀티 컨셉 네트워크의 생성)

  • Yun, Gwang-Ho;Yun, Tae-Bok;Lee, Ji-Hyeong
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2008.04a
    • /
    • pp.179-182
    • /
    • 2008
  • 웹의 방대한 데이터에서 사용자에게 유용한 정보를 제공하기 위하여 다양한 연구가 시도되고 있다. 웹 사용 마이닝은 웹 사용자의 로그 정보를 기반으로 웹페이지를 평가할 수 있는 유용한 방법이다. 하지만 웹 사용 마이닝을 이용한 웹 페이지 평가에는 사용자들의 다양한 성향 패턴을 무시한 일괄적인 모델을 생성하는데 주를 이루고 있다. 본 논문은 사용자 관심 키워드에 대한 웹 페이지 사용 정보를 수집하고 분석하여 멀티 컨셉 네트워크(Multi Concept Network : MC-Net)를 생성한다. MC-Net은 사용자 관심 키워드에 기반한 다양한 성향 정보에 따른 웹 페이지 연결망을 제공한다. 생성된 MC-Net은 웹 페이지 추천을 위하여 유용하게 사용할 수 있으며, 실험을 통하여 제안하는 방법의 유효함을 확인하였다.

  • PDF

J-Tree: An Efficient Index using User Searching Patterns for Large Scale Data (J-tree : 사용자의 검색패턴을 이용한 대용량 데이타를 위한 효율적인 색인)

  • Jang, Su-Min;Seo, Kwang-Seok;Yoo, Jae-Soo
    • Journal of KIISE:Databases
    • /
    • v.36 no.1
    • /
    • pp.44-49
    • /
    • 2009
  • In recent years, with the development of portable terminals, various searching services on large data have been provided in portable terminals. In order to search large data, most applications for information retrieval use indexes such as B-trees or R-trees. However, only a small portion of the data set is accessed by users, and the access frequencies of each data are not uniform. The existing indexes such as B-trees or R-trees do not consider the properties of the skewed access patterns. And a cache stores the frequently accessed data for fast access in memory. But the size of memory used in the cache is restricted. In this paper, we propose a new index based on disk, called J-tree, which considers user's search patterns. The proposed index is a balanced tree which guarantees uniform searching time on all data. It also supports fast searching time on the frequently accessed data. Our experiments show the effectiveness of our proposed index under various settings.

Query-based User Emotion Prediction (질의 기반 사용자 감정상태 예측)

  • Min, Hye-Jin;Kang, Inho
    • Annual Conference on Human and Language Technology
    • /
    • 2014.10a
    • /
    • pp.211-214
    • /
    • 2014
  • 본 연구에서는 질의를 기반으로 사용자의 감정상태를 예측하는 방법을 제안한다. 제안방법은 자극-감정 규칙베이스 구축, 규칙확률 값 기반 질의 랭킹, 질의 랭킹 기반 사용자 감정예측의 단계로 구성된다. 방법의 적절성을 검증하기 위하여 힘들다와 심심하다에 대한 결과로 사용자평가를 실시하였다. 힘들다의 결과에서는 힘들다 정도에 대한 점수가 높은 질의들을 지속적으로 검색하는 사용자들을 힘들다라고 판단할 수 있다고 분석되었다. 심심하다의 결과에서는 방법 간 유의미한 차이를 보이지 않았으나, 특정 개별질의의 지속적인 패턴을 분석하는 것이 좀 더 높은 점수를 얻은 것으로 평가되었다.

  • PDF

A Collaborative Filtering in a Lower-Dimensional Subspace using Random Projection (임의 사상을 이용한 저차원 공간에서의 협력적 여과)

  • Jung, Jun;Lee, Pil-Kyu
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2002.10d
    • /
    • pp.271-273
    • /
    • 2002
  • 추천 시스템에서 사용되고 있는 중요한 방법인 협력적 여과는 유사한 사용자들에 기초하여 그 사용자들이 선호하는 아이템을 교차 추천을 해주는 방법이다. 사용자들에 대한 정보는 아이템을 평가한 등급에 기초하며, 그 평가 등급 패턴이 유사한 사용자를 찾게 된다. 협력적 여과는 사용자와 정보의 증가에 따라서 성능이 저하되는 문제점을 가지고 있다. 이러한 문제점을 해결하기 위하여 SVD, PCA, LSI와 같은 차원 감소 방법이 제시되어 왔으나, 이러한 방법은 계산 비용이 크다는 단점을 가지고 있다. 따라서, 계산 비용이 적고, 정확성에 있어서도 충분히 정확한 임시 사상이 최근에 주목을 받고 있다. 본 논문에서는 임의 사상을 이용한 차원 감소 방법이 협력적 여과에 미치는 효과를 실험을 통하여 제시한다. 실험적으로, 임의 사상 방법은 협력적 여과에서 충분히 정확한 성능을 보였다.

  • PDF

Proactive Retrieval Method Using Context Patterns in Ubiquitous Computing (유비쿼터스 컴퓨팅에서 컨텍스트 패턴을 이용한 프로액티브 검색 기법)

  • Kim, Sung-Rim;Kwon, Joon-Hee
    • Journal of Korea Multimedia Society
    • /
    • v.7 no.8
    • /
    • pp.1017-1024
    • /
    • 2004
  • Ubiquitous system requires intelligent environment and system that perceives context in a proactive manner. This paper describes proactive retrieval method using context patterns in ubiquitous computing. And as the user's contexts change, new information is delivered proactively based on user's context patterns. For proactive retrieval, we extract context patterns based on sequential pattern discovery and association rule in data mining. By storing only information to be needed in near future using the context patterns, we solved the problem of speed and storage capacity of mobile devices in ubiquitous computing. We explain algorithms and an example. Several experiments are performed and the experimental results show that our method has a good information retrieval.

  • PDF