• Title/Summary/Keyword: 사용자 패턴 정보

Search Result 1,286, Processing Time 0.029 seconds

Outlier Detection Method for Mobile Banking with User Input Pattern and E-finance Transaction Pattern (사용자 입력 패턴 및 전자 금융 거래 패턴을 이용한 모바일 뱅킹 이상치 탐지 방법)

  • Min, Hee Yeon;Park, Jin Hyung;Lee, Dong Hoon;Kim, In Seok
    • Journal of Internet Computing and Services
    • /
    • v.15 no.1
    • /
    • pp.157-170
    • /
    • 2014
  • As the increase of transaction using mobile banking continues, threat to the mobile financial security is also increasing. Mobile banking service performs the financial transaction using the dedicate application which is made by financial corporation. It provides the same services as the internet banking service. Personal information such as credit card number, which is stored in the mobile banking application can be used to the additional attack caused by a malicious attack or the loss of the mobile devices. Therefore, in this paper, to cope with the mobile financial accident caused by personal information exposure, we suggest outlier detection method which can judge whether the transaction is conducted by the appropriate user or not. This detection method utilizes the user's input patterns and transaction patterns when a user uses the banking service on the mobile devices. User's input and transaction pattern data involves the information which can be used to discern a certain user. Thus, if these data are utilized appropriately, they can be the information to distinguish abnormal transaction from the transaction done by the appropriate user. In this paper, we collect the data of user's input patterns on a smart phone for the experiment. And we use the experiment data which domestic financial corporation uses to detect outlier as the data of transaction pattern. We verify that our proposal can detect the abnormal transaction efficiently, as a result of detection experiment based on the collected input and transaction pattern data.

Personalized Recommendation based on Item Dependency Map (Item Dependency Map을 기반으로 한 개인화된 추천기법)

  • Youm, Sun-Hee;Cho, Dong-Sub
    • Proceedings of the KIEE Conference
    • /
    • 2001.07d
    • /
    • pp.2789-2791
    • /
    • 2001
  • 데이터 마이닝을 통해 우리는 숨겨진 지식, 예상되지 않았던 경향 그리고 새로운 법칙들을 방대한 데이터에서 이끌어내고자 한다. 본 논문에서 우리는 사용자의 구매 패턴을 발견하여 사용자가 원하는 상품을 미리 예측하여 추천하는 알고리즘을 소개하고자 한다. 제안하고 있는 item dependency map은 구매된 상품간의 관계를 수식화 하여 행렬의 형태로 표현한 것이다. Item dependency map의 값은 사용자가 A라는 상품을 구매한 후 B상품을 살 확률이다. 이런 정보를 가지고 있는 item dependency map은 홉필드 네트윅(Hopfield network)에서 연상을 위한 패턴 값으로 적용된다. 홉필드 네트웍은 각 노드사이의 연결가중치에 기억하고자 하는 것들을 연상시킨 뒤 어떤 입력을 통해서 전체 네트워크가 어떤 평형상태에 도달하는 방식으로 작동되는 신경망 중의 하나이다. 홉필드 네트웍의 특징 중의 하나는 부분 정보로부터 전체 정보를 추출할 수 있는 것이다. 이러한 특징을 가지고 사용자들의 일반적인 구매패턴을 일부 정보만 가지고 예측할 수 있다. Item dependency map은 홉필드 네트윅에서 사용자들의 그룹별 패턴을 학습하는데 사용된다. 따라서 item dependency map이 얼마나 사용자 구매패턴에 대한 정보를 가지고 있는지에 따라 그 결과가 결정되는 것이다. 본 논문은 정확한 item dependency map을 계산해 내는 알고리즘을 주로 논의하겠다.

  • PDF

The Relationships Between Navigational Pattens and Information Processing Styles of Hypermedia Users (하이퍼미디어 사용자의 정보처리 유형이 정보탐색 패턴에 미치는 영향)

  • 이미자
    • Korean Journal of Cognitive Science
    • /
    • v.12 no.1_2
    • /
    • pp.65-76
    • /
    • 2001
  • This study investigated the relationships between hypermedia users information processing styles and navigational patterns. Three aspects of navigational patterns were investigated: (a) navigational breadth patterns which reveal how comprehensively users access, (b) navigational path patterns which display what sequences users follow. and (c) navigational method patterns which show what methods u users employ when using the system. Information processing styles were measured by the Human Information Processing Styles(HIPS) Survey. The subjects were 102 undergraduate students enrolled in management courses at a university. Participation was voluntary 34 students were selected for each of left, right, and integrated information processor group. The subjects interacted with A.g.i.l.e. TrainerTM program to complete two types of searching tasks 'open-ended and closed-ended tasks' Findings indicated that the information processing style seems to play an important role in how an individual interacts with the hypermedia systems.

  • PDF

유비쿼터스 컴퓨팅을 위한 지능적인 사용자 위치 이동 학습 및 예측

  • 유지오;김경중;조성배
    • Proceedings of the Korea Inteligent Information System Society Conference
    • /
    • 2004.11a
    • /
    • pp.139-148
    • /
    • 2004
  • 사용자의 지리적 위치에 따른 서비스를 제공하는 위치기반서비스는 유비쿼터스 컴퓨팅의 중요한 응용으로 여러 위치 감지기술과 다양한 시험 및 상용 서비스들이 개발되어 왔다. 하지만 기존의 위치기반서비스는 단순히 위치와 서비스를 정적으로 연결하는 기법에 그치고 있어 서비스의 유연성이 떨어지는 한계가 있다. 이를 개선하기 위해 위치 정보로부터 고수준 정보를 추론하여 보다 지능적인 서비스를 제공하려는 연구들이 이루어지고 있다. 본 논문에서는 사용자의 위치이동 데이터를 학습하여 미래의 위치 이동 경로를 예측하는 기법을 제안한다. GPS(Global Positioning System)를 사용하여 수집된 시퀸스 데이터를 시퀸스 데이터 처리에 특화된 RSOM (Recurrent Self Organizing Map)을 사용하여 클러스터링하고 이를 마르코브 모델을 사용하여 학습하여 각 위치 이동 패턴 모델을 구축한다. 현재의 위치이동 패턴을 구축된 각 이동패턴 모델들과 비교하여 가장 유사한 위치 이동패턴으로 미래의 사용자이동을 예측한다. 제안한 위치이동 예측 기법을 평가하기 위해 실제 대학생의 생활을 기반으로 하여 GPS 데이터를 대학 캠퍼스 상에서 수집하고 이를 이용하여 제안한 방법의 학습 및 예측 성능을 평가한다. 그 결과 제안한 방법을 사용하여 사용자의 미래의 위치이동경로를 예측하는 것이 가능하고 불확실한 상황에서도 유연하게 예측을 수행함을 확인하였다.

  • PDF

Post-Processing of Speech Recognition Using User Utterance Sequential Pattern (사용자 발화 순차패턴을 이용한 음성인식 후처리)

  • Song, Won-Moon;Kim, Eun-Ju;Kim, Myung-Won
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2005.07b
    • /
    • pp.709-711
    • /
    • 2005
  • 최근 음성인식 분야에서는 발화된 음성의 단순한 신호 처리위주의 인식 결과로부터 좀 더 신뢰할 수 있는 결과를 얻기 위하여 여러 가지 후처리 기법들이 연구되고 있다. 본 논문에서는 개인 사용자를 위한 음성 명령어 인식 환경에서 사용자의 발화 정보를 후처리에 적용함으로써 사용자 정보를 고려한 음성인식 후처리 기법을 제안한다. 먼저 이전에 사용했던 음성 명령어들로부터 명령어 발화 순차 패턴 규칙을 추출 한 후 사용자가 사전에 발화한 명령어를 바탕으로 구성된 순차 패턴을 비교하여 순차 규칙상 얻어 질 수 있는 단어를 결정한다. 이렇게 얻어진 단어를 고려하여 음성인식기 인식단어 후보들의 확률값을 적절히 보정한 후 최종 인식 단어를 재결정한다. 이러한 과정에서 적절한 보정을 위하여 발화 순차 패턴의 신뢰도와 인식기의 결과단어를 고려한 보정 방법을 제안한다. 실험을 통하여 제안한 후처리를 이용한 음성인식이 HMM을 이용한 기본 음성인식에 비해 오류율을 $15\%$이상 낮추어 인식률에 상당한 기여를 하였음을 확인할 수 있다.

  • PDF

패턴 기반 사용자 인증 시스템 기술 연구 동향 및 비교

  • Shin, Hyungjune;Hur, Junbeom
    • Review of KIISC
    • /
    • v.25 no.3
    • /
    • pp.36-43
    • /
    • 2015
  • 최근 다양한 스마트기기의 대중화로 인해, 사용자의 개인 정보를 이용한 다양한 스마트 서비스들이 제공되고 있다, 이에 따라 해당 정보의 사용자를 확인하는 사용자 인증 기법의 중요성이 대두되고 있다. 가장 대표적으로 널리 쓰이는 인증기법인 패스워드 인증기법은 사용자가 기억하기 쉬운 형태로 패스워드를 설정하기 때문에 추측공격(Guessing Attack)과 사전공격(Dictionary Attack)에 취약하다. 또한 터치 스크린 기반의 시스템에서 사용할 경우, 가상 키보드의 불편함으로 인해 편리성이 떨어진다. 본 논문에서는 패스워드 인증 기법의 문제점을 해결한 여러 가지 패턴 기반 사용자 인증기법들의 연구 동향에 대해 분석하고, 해당 인증 기법들을 비교하여 분석한다.

A Generalization Approach to User Modeling for Adapting Various Personalized Services in Ubiquitous Computing Environment (유비쿼터스 환경에서 다양한 개인화 서비스에 적용하기 위한 사용자 모델링의 일반화 방법론)

  • Lee, Ju-Yeon;Lee, Seong-Jin;Lee, Soo-Won
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2006.10b
    • /
    • pp.366-371
    • /
    • 2006
  • 최근 연구가 활발히 진행되고 있는 ‘유비쿼터스’라는 새로운 패러다임은 기존보다 더욱 많은 컴퓨팅 자원을 이용하여 사용자의 편의를 지원하는 것을 그 목표로 하고 있다. 유비쿼터스 컴퓨팅 환경에서 사용자를 지원하기 위한 대표적인 예로 개인화 서비스를 들 수 있으며, 개인화 서비스는 사용자에 대한 모델링이 필수 요소가 된다. 개개인의 행동 패턴 혹은 선호도 정보로 구성된 사용자 모델은 다양한 개인화 서비스의 원활한 지원을 위해 지금까지 유용하게 사용되고 있지만, 기존의 사용자 모델은 각 서비스가 개발될 때, 그 서비스에 적합한 형태로 매번 설계되어야 하는 문제점을 지닌다. 본 논문에서는 이러한 문제점을 해결하고자, 사용자 모델을 구성하는 정보들을 분석하여, 모델 설계에 필요한 일반화된 입력 패턴들을 도출하고, 도출된 패턴들을 바탕으로 더욱 쉽고 빠르게 사용자 모델을 생성할 수 있는 방법을 제안한다.

  • PDF

Analysis and Summary of User's Behavior Patterns in Mobile Devices (모바일 디바이스 사용자의 행동 패턴 분석 및 요약)

  • Jung Myung-Chul;Cho Sung-Bae
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2006.06b
    • /
    • pp.148-150
    • /
    • 2006
  • 최근 모바일 디바이스의 기능이 다양해지면서 현대인에게 없어서는 안 될 필수품이 되었다. 모바일 디바이스의 사용영역이 널어지면서 늘어나는 개인 정보의 활용에 대한 관심이 집중되고 있다. 본 논문에서는 모바일 디바이스에서 사용자의 행동 패턴 분석 및 요약을 위한 지능형 에이전트를 제안한다 사용자의 다양한 행동 및 상태 패턴 분석을 위해 협력적 모듈 베이지안 네트워크를 사용한다. 협력적 모들 베이지안 네트워크는 비슷한 유형의 패턴끼리 모듈로 설계해 상호 협력적으로 작동하여 사용자의 특이성을 추론한다. 사용자에 기억에 남을 만한 특이성를 선택하기 위해 Noisy-OR gate를 적응하여 계산한 특이성간의 연결 강도와 특이성의 우선순위를 바탕으로 사용자의 하루 동안의 행동을 요약하여 구성한다. 추론을 위한 프로토타입을 작성하고 시나리오를 바탕으로 제안한 방법의 유용성을 보인다.

  • PDF

Estimating Personal and Social Information for Mobile User (모바일 사용자의 개인 및 소셜 정보 추정)

  • Son, Jeong-Woo;Han, Yong-Jin;Song, Hyun-Je;Park, Seong-Bae;Lee, Sang-Jo
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.2 no.9
    • /
    • pp.603-614
    • /
    • 2013
  • The popularity of mobile devices provides their users with a circumstance that services and information can be accessed wherever and whenever users need. Accordingly, various studies have been proposed personalized methods to improve accessibility of mobile users to information. However, since these personalized methods require users' private information, they gives rise to problems on security. An efficient way to resolve security problems is to estimate user information by using their online and offline behavior. In this paper, for this purpose, it is proposed a novel user information identification system that identifies users' personal and social information by using both his/her behavior on social network services and proximity patterns obtained from GPS data. In the proposed system, personal information of a user like age, gender, and so on is estimated by analyzing SNS texts and POI (Point of Interest) patterns, while social information between a pair of users like family and friend is predicted with proximity patterns between the users. Each identification module is efficiently designed to handle the characteristics of user data like much noise in SNS texts and missing signals in GPS data. In experiments to evaluate the proposed system, our system shows its superiority against ordinary identification methods. This result means that the proposed system can efficiently reflect the characteristics of user data.

Improvement of Retrieval Convenience through the Correlation Analysis between Social Value and Query Pattern (소셜지수와 질의패턴의 상관관계 분석을 통한 검색 편의성 향상)

  • Ahn, Moo-Hyun;Park, Gun-Woo;Lee, Sang-Hoon
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2009.04a
    • /
    • pp.391-394
    • /
    • 2009
  • 정보의 양이 폭발적으로 증가함에 따라 웹 사용자가 원하는 적합한 데이터를 찾아내는 것은 매우 어렵다. 이는 웹 사용자마다 서로 다른 검색의도와 질의의 모호성에 의한 것으로, 이와 같은 검색의 어려움을 해결하기 위해 많은 연구들이 수행되어 왔다. 질의 로그는 검색자의 검색 의도가 내포되어 있는 중요한 자료이다. 따라서 웹 사용자별 질의 로그 패턴을 분석하여 유사한 질의를 사용하는 웹 사용자들을 클러스터링 하여 검색에 적용한다면 좀 더 유용한 정보를 획득할 수 있다. 즉, 특정 카테고리와 연관된 질의를 자주 사용하는 웹 사용자들은 해당 분야에 관심이 많을 것이며, 또한 다른 카테고리에 관심이 높은 사람보다 상호간에 소셜지수가 높게 나타날 것이다. 특정 주제에 대해 검색을 할 경우 해당 분야에 관심이 높은 웹 사용자들의 질의 및 클릭한 URL 정보를 상속받을 수 있다면 찾고자 하는 정보에 보다 빨리 접근할 수 있다. 따라서 본 연구는 질의패턴 분석을 통해 카테고리별로 관심도가 높은 웹 사용자들을 클러스터링 한 후 해당 카테고리에 대한 정보 검색시 이들이 사용한 질의와 클릭한 URL 정보를 웹 사용자들에게 제공해줌으로써 정보검색의 편의성을 향상시키기 위한 방안을 제안한다.