• Title/Summary/Keyword: 사용자 기반 협력필터링

Search Result 82, Processing Time 0.027 seconds

SOM Clustering Method based on RFM Analysis for Predicting Customer Purchase Pattern in u-Commerce (RFM 분석 기반 고객 구매 패턴을 예측을 위한 SOM 클러스터링 방법)

  • Cho, Young Sung;Moon, Song Chul;Ryu, Keun Ho
    • Proceedings of the Korean Society of Computer Information Conference
    • /
    • 2013.07a
    • /
    • pp.185-187
    • /
    • 2013
  • 유비쿼터스 컴퓨팅이 생활의 일부가 되어가면서 정보의 양도 급속도로 늘어나고 있으며, 이로 인해 많은 데이터 속에서 정보를 찾아내는 기술이 부각되고 있다. 고객 기반의 협력적 필터링을 이용한 고객 선호도 예측 방법에서는 아이템에 대한 사용자의 선호도를 기반으로 이웃 선정 방법을 사용하므로 아이템에 대한 내용을 반영하지 못할 뿐만 아니라 희박성 문제를 해결하지 못하고 있다. 그리고 비슷한 선호도를 가진 일부 아이템의 정보를 바탕으로 하기 때문에 아이템의 속성은 무시하는 경향이 있다. 본 논문에서는 유비쿼터스 상거래에서 RFM(Recency, Frequency, Monetary) 분석 기반의 SOM을 이용한 군집방법을 제안한다. 제안 방법은 고객의 구매 데이터 기반의 유사한 속성의 데이터끼리의 클러스터링을 통해 보다 빠른 시간 내에 고객 성향에 맞는 추천이 가능한 구매 패턴 추출이 가능하다.

  • PDF

Web Search Personalization based on Preferences for Page Features (문서 특성에 대한 선호도 기반 웹 검색 개인화)

  • Lee, Soo-Jung
    • Journal of The Korean Association of Information Education
    • /
    • v.15 no.2
    • /
    • pp.219-226
    • /
    • 2011
  • Web personalization has focused on extracting web pages interesting to users, to help users searching wanted information efficiently on the web. One of the main methods to achieve this is by using queries, links and users' preferred words in the pages. In this study, we surveyed from the web users the features of pages that are considered important to themselves in selecting web pages. The survey results showed that the content of the pages is the most important. However, images and readability of the page are rated as high as the content for some users. Based on this result, we present a method for maintaining relative weights of major page features differently in the profile for each user, which is used for personalizing web search results. Performance of the proposed personalization method is analyzed to prove its superiority such that it yields as much as 1.5 times higher rate than the system utilizing both queries and preferred words and about 2.3 times higher rate than a generic search engine.

  • PDF

Clustering-Based Recommendation Using Users' Preference (사용자 선호도를 사용한 군집 기반 추천 시스템)

  • Kim, Younghyun;Shin, Won-Yong
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.21 no.2
    • /
    • pp.277-284
    • /
    • 2017
  • In a flood of information, most users will want to get a proper recommendation. If a recommender system fails to give appropriate contents, then quality of experience (QoE) will be drastically decreased. In this paper, we propose a recommender system based on the intra-cluster users' item preference for improving recommendation accuracy indices such as precision, recall, and F1 score. To this end, first, users are divided into several clusters based on the actual rating data and Pearson correlation coefficient (PCC). Afterwards, we give each item an advantage/disadvantage according to the preference tendency by users within the same cluster. Specifically, an item will be received an advantage/disadvantage when the item which has been averagely rated by other users within the same cluster is above/below a predefined threshold. The proposed algorithm shows a statistically significant performance improvement over the item-based collaborative filtering algorithm with no clustering in terms of recommendation accuracy indices such as precision, recall, and F1 score.

Hand Acupuncture Prescription using Personalized Symptom according to Context in U-Healthcare (U-헬스케어에서 상황에 따른 자가진단을 이용한 수지침 처방)

  • Chung, Kyung-Yong;Rim, Kee-Wook;Lee, Jung-Hyun
    • The Journal of the Korea Contents Association
    • /
    • v.9 no.5
    • /
    • pp.24-32
    • /
    • 2009
  • Our society is rapidly ageing and income level is rising. With the development of IT-based convergence technology and the construction of infrastructure for the u-healthcare services, the importance of the hand acupuncture prescription has known as the folk remedies is being spotlighted. In this paper, we proposed the hand acupuncture prescription using the personalized symptom according to context in the u-healthcare. The proposed method defined the context and environment of the users and predicted the profited hand acupuncture prescription service according to the personalized symptom using the collaborative filtering. The user gets the accurate hand acupuncture prescription as the personalized symptom to input only the name of a disease in the proposed system. We developed GUI for this purpose, and experimented with it to verify the logical validity and effectiveness. Accordingly, the satisfaction and the quality of services will be improved the hand acupuncture prescription by supporting the context information as well as the personalized symptom.

Design of A Spammail Control Model Based on Hierarchical Policy (정책기반의 계층적 스팸메일 제어모델 설계)

  • Lee Yong-Zhen;Baek Seung-Ho;Park Nam-Kyu;Lee Sang-Ho
    • Journal of the Korea Society of Computer and Information
    • /
    • v.10 no.2 s.34
    • /
    • pp.143-151
    • /
    • 2005
  • As the internet and I-commerce have been developing. a novel method for marketing is needed. A new advertisement using E-mail is becoming popular, because it has characteristics with low costs and relative efficiency. However. as the spam mails are increasing rapidly, mail service companies and users are deeply damaged in their mind and economically. In this paper, we design a hierarchical spam mail blocking policy through cooperation of all the participants-user, administrator, ISP to cut off the spam mail efficiently and Propose an efficient model to block and manage the spam mails based on the Policy. Also we prove the efficiencies and effectiveness of the proposed model through evaluation process .

  • PDF

A Study on Recommendation Technique Using Mining and Clustering of Weighted Preference based on FRAT (마이닝과 FRAT기반 가중치 선호도 군집을 이용한 추천 기법에 관한 연구)

  • Park, Wha-Beum;Cho, Young-Sung;Ko, Hyung-Hwa
    • Journal of Digital Contents Society
    • /
    • v.14 no.4
    • /
    • pp.419-428
    • /
    • 2013
  • Real-time accessibility and agility are required in u-commerce under ubiquitous computing environment. Most of the existing recommendation techniques adopt the method of evaluation based on personal profile, which has been identified with difficulties in accurately analyzing the customers' level of interest and tendencies, as well as the problems of cost, consequently leaving customers unsatisfied. Researches have been conducted to improve the accuracy of information such as the level of interest and tendencies of the customers. However, the problem lies not in the preconstructed database, but in generating new and diverse profiles that are used for the evaluation of the existing data. Also it is difficult to use the unique recommendation method with hierarchy of each customer who has various characteristics in the existing recommendation techniques. Accordingly, this dissertation used the implicit method without onerous question and answer to the users based on the data from purchasing, unlike the other evaluation techniques. We applied FRAT technique which can analyze the tendency of the various personalization and the exact customer.

Weight Based Technique For Improvement Of New User Recommendation Performance (신규 사용자 추천 성능 향상을 위한 가중치 기반 기법)

  • Cho, Sun-Hoon;Lee, Moo-Hun;Kim, Jeong-Seok;Kim, Bong-Hoi;Choi, Eui-In
    • The KIPS Transactions:PartD
    • /
    • v.16D no.2
    • /
    • pp.273-280
    • /
    • 2009
  • Today, many services and products that used to be only provided on offline have been being provided on the web according to the improvement of computing environment and the activation of web usage. These web-based services and products tend to be provided to customer by customer's preferences. This paradigm that considers customer's opinions and features in selecting is called personalization. The related research field is a recommendation. And this recommendation is performed by recommender system. Generally the recommendation is made from the preferences and tastes of customers. And recommender system provides this recommendation to user. However, the recommendation techniques have a couple of problems; they do not provide suitable recommendation to new users and also are limited to computing space that they generate recommendations which is dependent on ratings of products by users. Those problems has gathered some continuous interest from the recommendation field. In the case of new users, so similar users can't be classified because in the case of new users there is no rating created by new users. The problem of the limitation of the recommendation space is not easy to access because it is related to moneywise that the cost will be increasing rapidly when there is an addition to the dimension of recommendation. Therefore, I propose the solution of the recommendation problem of new user and the usage of item quality as weight to improve the accuracy of recommendation in this paper.

Bicycle Design Recommendation using Context based Sensibility Analysis (상황 기반의 감성 분석을 이용한 자전거 디자인 추천)

  • Jung, Ho-Ill;Kim, Hyo-Jun;Lee, Seung-Jin;Chung, Kyung-Yong;Kang, Jeong-Hoon;Kim, Min-Hyun;Kim, Jong-Wan;Lee, Bo-Hyun;Cho, Eun-Young
    • Proceedings of the Korea Contents Association Conference
    • /
    • 2012.05a
    • /
    • pp.277-278
    • /
    • 2012
  • 다양한 라이프스타일에 따른 유비쿼터스 환경에서 디자인 요소와 감성공학을 결합시키는 상호작용 시스템이 요구되고 있으며 많은 연구가 진행되어 왔다. IT융합기술을 이용하여 감성 디자인을 제공하는 것은 제품 서비스 전략의 중요한 요소이다. 본 논문에서는 상황 기반의 감성 분석을 이용한 자전거 디자인 추천 방법론을 제안하였다. 제안된 방법은 자신의 감성에 부합하는 자전거 디자인을 제공함으로써 이를 얻기 위한 시간과 비용을 줄여주고, 원하는 디자인 스타일에 적용하도록 한다. 감성에 따른 자전거 디자인을 추천하기 위해 협력적 필터링을 사용하여 개인화 서비스를 제공한다. 이를 사용자 인터페이스로 구축하여 논리적 타당성과 유효성을 검증하기 위해 실험적인 적용을 시도하고자 한다.

  • PDF

A Study on the Improvement of Filter Bubble Phenomenon by Echo Chamber in Social Media (소셜미디어에서 에코챔버에 의한 필터버블 현상 개선 방안 연구)

  • Cho, Jinhyung;Kim, Kyujung
    • The Journal of the Korea Contents Association
    • /
    • v.22 no.5
    • /
    • pp.56-66
    • /
    • 2022
  • Due to the recent increase in information encountered on social media, algorithm-based recommendation formats selectively provide information based on user information, which often causes a filter bubble effect by an Echo Chamber. Eco-chamber refers to a phenomenon in which beliefs are amplified or strengthened by communication only in an enclosed system, and filter bubbles refer to a phenomenon in which information providers provide customized information according to users' interests, and users encounter only filtered information. The purpose of this study is to propose a method of efficiently selecting information as a way to improve the filter bubble phenomenon by such an echo chamber. The research progress method analyzed recommended algorithms used on YouTube, Facebook and Amazon. In this study, humanities solutions such as training critical thinking skills of social media users and strengthening objective ethical standards according to self-preservation laws, and technical solutions of model-based cooperative filtering or cross-recommendation methods were presented. As a result, recommended algorithms should continue to supplement technology and develop new techniques, and humanities should make efforts to overcome cognitive dissonance and prevent users from falling into confirmation bias through critical thinking training and political communication education.

Understanding Collaborative Tags and User Behavioral Patterns for Improving Recommendation Accuracy (추천 시스템 정확도 개선을 위한 협업태그와 사용자 행동패턴의 활용과 이해)

  • Kim, Iljoo
    • Database Research
    • /
    • v.34 no.3
    • /
    • pp.99-123
    • /
    • 2018
  • Due to the ever expanding nature of the Web, separating more valuable information from the noisy data is getting more important. Although recommendation systems are widely used for addressing the information overloading issue, their performance does not seem meaningfully improved in currently suggested approaches. Hence, to investigate the issues, this study discusses different characteristics of popular, existing recommendation approaches, and proposes a new profiling technique that uses collaborative tags and test whether it successfully compensates the limitations of the existing approaches. In addition, the study also empirically evaluates rating/tagging patterns of users in various recommendation approaches, which include the proposed approach, to learn whether those patterns can be used as effective cues for improving the recommendations accuracy. Through the sensitivity analyses, this study also suggests the potential associated with a single recommendation system that applies multiple approaches for different users or items depending upon the types and contexts of recommendations.