• Title/Summary/Keyword: 사용자 관심

Search Result 2,456, Processing Time 0.03 seconds

Approximate Top-k Labeled Subgraph Matching Scheme Based on Word Embedding (워드 임베딩 기반 근사 Top-k 레이블 서브그래프 매칭 기법)

  • Choi, Do-Jin;Oh, Young-Ho;Bok, Kyoung-Soo;Yoo, Jae-Soo
    • The Journal of the Korea Contents Association
    • /
    • v.22 no.8
    • /
    • pp.33-43
    • /
    • 2022
  • Labeled graphs are used to represent entities, their relationships, and their structures in real data such as knowledge graphs and protein interactions. With the rapid development of IT and the explosive increase in data, there has been a need for a subgraph matching technology to provide information that the user is interested in. In this paper, we propose an approximate Top-k labeled subgraph matching scheme that considers the semantic similarity of labels and the difference in graph structure. The proposed scheme utilizes a learning model using FastText in order to consider the semantic similarity of a label. In addition, the label similarity graph(LSG) is used for approximate subgraph matching by calculating similarity values between labels in advance. Through the LSG, we can resolve the limitations of the existing schemes that subgraph expansion is possible only if the labels match exactly. It supports structural similarity for a query graph by performing searches up to 2-hop. Based on the similarity value, we provide k subgraph matching results. We conduct various performance evaluations in order to show the superiority of the proposed scheme.

Development of Postural Correction App Service with Body Transformation and Sitting Pressure Measurement (체위 변환과 좌압 측정을 통한 자세교정 앱 서비스의 개발)

  • Jung-Hyeon Choi;Jun-Ho Park;Young-Ki Sung;Jae-Yong Seo;Jun-Mo Park
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.24 no.1
    • /
    • pp.15-20
    • /
    • 2023
  • In general, maintaining an incorrect sitting posture for a long time is widely known to adversely affect the spine. Recently, several researchers have been interested in the causal relationship between incorrect sitting posture and spinal diseases, and have been studying methods to precisely measure changes in sitting or standing posture to prevent spinal diseases. In previous studies, we have developed a sensor device capable of measuring real-time posture change, applied a momentum calculation algorithm to improve the accuracy of real-time posture change measurement, and verified the accuracy of the postural change measurement sensor. In this study, we developed a posture measurement and analysis device that considers changes in the center of body pressure through the developed sitting pressure measurement, and it confirmed the sensor as an auxiliary tool to increase the accuracy of posture correction training with improving the user's visual feedback.

Beauty Product Recommendation System using Customer Attributes Information (고객의 특성 정보를 활용한 화장품 추천시스템 개발)

  • Hyojoong Kim;Woosik Shin;Donghoon Shin;Hee-Woong Kim;Hwakyung Kim
    • Information Systems Review
    • /
    • v.23 no.4
    • /
    • pp.69-86
    • /
    • 2021
  • As artificial intelligence technology advances, personalized recommendation systems using big data have attracted huge attention. In the case of beauty products, product preferences are clearly divided depending on customers' skin types and sensitivity along with individual tastes, so it is necessary to provide customized recommendation services based on accumulated customer data. Therefore, by employing deep learning methods, this study proposes a neural network-based recommendation model utilizing both product search history and context information such as gender, skin types and skin worries of customers. The results show that our model with context information outperforms collaborative filtering-based recommender system models using customer search history.

A Study on Uncle Block Analysis of Blockchain Using Machine Learning Techniques (머신러닝 기법을 활용한 블록체인의 엉클블록 분석 연구)

  • Han-Min Kim
    • Information Systems Review
    • /
    • v.22 no.1
    • /
    • pp.1-16
    • /
    • 2020
  • Blockchain is emerging as a technology that can build trust between users participating in the system. As interest of Blockchain has increased, previous studies have mainly focused on cryptocurrency and application methods related to Blockchain technology. On the other hand, the studies on the stable implementation of Blockchain were rarely conducted. Typically, uncle block in the Blockchain plays an important role in the stable implementation of the Blockhain system, but no study was conducted on this. Drawing on this recognition, this study attempts to predict the uncle block of Blockchain using machine learning method, Blockchain information, and macro-economic factors. The results of artificial neural network and support vector machine analysis, Blockchain information and macro-economic factors contributed to the prediction of uncle block of Blockchain. In addition, artificial neural network using only Blockchain information provided the best performance for predicting the occurrence of uncle block. This study suggests ways to lead and contribute to Blockchain research in information systems filed.

A Study on Vulnerability for Isolation Guarantee in Container-based Virtualization (컨테이너 기반 가상화에서 격리성 보장을 위한 취약성 고찰)

  • Dayun Yum;Dongcheon Shin
    • Convergence Security Journal
    • /
    • v.23 no.4
    • /
    • pp.23-32
    • /
    • 2023
  • Container-based virtualization has attracted many attentions as an alternative to virtual machine technology because it can be used more lightly by sharing the host operating system instead of individual guest operating systems. However, this advantage may owe some vulnerabilities. In particular, excessive resource use of some containers can affect other containers, which is known as the noisy neighbor problem, so that the important property of isolation may not be guaranteed. The noisy neighbor problem can threat the availability of containers, so we need to consider the noisy neighbor problem as a security problem. In this paper, we investigate vulnerabilities on guarantee of isolation incurred by the noisy neighbor problem in container-based virtualization. For this we first analyze the structure of container-based virtualization environments. Then we present vulnerabilities in 3 functional layers and general directions for solutions with limitations.

Virtual Reality Contents for Rehabilitation Training Utilizing Skeletal Data and Foot Pressure Mat (골격 데이터와 발 압력매트를 활용한 재활 훈련용 가상 현실 콘텐츠)

  • Jongwook Si;Hyeri Jeong;Sangjin Lee;Sungyoung Kim
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.17 no.5
    • /
    • pp.330-338
    • /
    • 2024
  • With the growing interest in rehabilitation therapy and exercise programs, there is an increasing need for smart content that simultaneously addresses both health and engagement. Particularly, exercises performed in a state of physical imbalance carry a high risk of injury, making it essential to detect and integrate balance into the training process. This paper proposes Rehabilitation Training program that combines a pressure platform with virtual reality (VR) technology to address this issue. The program enables users to perform exercises such as squats, stationary walking, and forward-backward walking in a VR environment, utilizing real-time foot pressure data captured through a pressure mat. Additionally, an algorithm based on YOLOv8-pose extracted skeletal coordinates is proposed to assess body balance and automatically count squat repetitions. The experimental results showed an average accuracy of 87.9% for each posture, confirming that users can be provided with a safer, more efficient, and immersive training experience through this approach.

IoT-based Smart alarm system (IoT 기반의 스마트 알람 시스템)

  • Ilyosbek Rakhimjon-Ugli Numonov;Tae-Kook Kim
    • Journal of Internet of Things and Convergence
    • /
    • v.10 no.4
    • /
    • pp.35-41
    • /
    • 2024
  • Due to increasingly busy lifestyles, sleep time is gradually being reduced, leading to a growing interest in effective sleep methods. Traditional alarms that only ring at a set time can disrupt efficient sleep and increase fatigue. To solve this problem, a smart alarm system utilizing Raspberry Pi has been proposed. The proposed alarm not only rings at a preset time, like conventional alarms, but also helps by using an infrared sensor attached to the Raspberry Pi to detect the user's sleep onset time and calculate the optimal sleep duration, setting the alarm accordingly. Additionally, it allows for easy naps during the day by setting a fixed nap time. This Smart Alarm system was implemented using MIT App Inventor. The proposed Smart Alarm system is expected to contribute to more efficient sleep.

Comparison of Association Rule Learning and Subgroup Discovery for Mining Traffic Accident Data (교통사고 데이터의 마이닝을 위한 연관규칙 학습기법과 서브그룹 발견기법의 비교)

  • Kim, Jeongmin;Ryu, Kwang Ryel
    • Journal of Intelligence and Information Systems
    • /
    • v.21 no.4
    • /
    • pp.1-16
    • /
    • 2015
  • Traffic accident is one of the major cause of death worldwide for the last several decades. According to the statistics of world health organization, approximately 1.24 million deaths occurred on the world's roads in 2010. In order to reduce future traffic accident, multipronged approaches have been adopted including traffic regulations, injury-reducing technologies, driving training program and so on. Records on traffic accidents are generated and maintained for this purpose. To make these records meaningful and effective, it is necessary to analyze relationship between traffic accident and related factors including vehicle design, road design, weather, driver behavior etc. Insight derived from these analysis can be used for accident prevention approaches. Traffic accident data mining is an activity to find useful knowledges about such relationship that is not well-known and user may interested in it. Many studies about mining accident data have been reported over the past two decades. Most of studies mainly focused on predict risk of accident using accident related factors. Supervised learning methods like decision tree, logistic regression, k-nearest neighbor, neural network are used for these prediction. However, derived prediction model from these algorithms are too complex to understand for human itself because the main purpose of these algorithms are prediction, not explanation of the data. Some of studies use unsupervised clustering algorithm to dividing the data into several groups, but derived group itself is still not easy to understand for human, so it is necessary to do some additional analytic works. Rule based learning methods are adequate when we want to derive comprehensive form of knowledge about the target domain. It derives a set of if-then rules that represent relationship between the target feature with other features. Rules are fairly easy for human to understand its meaning therefore it can help provide insight and comprehensible results for human. Association rule learning methods and subgroup discovery methods are representing rule based learning methods for descriptive task. These two algorithms have been used in a wide range of area from transaction analysis, accident data analysis, detection of statistically significant patient risk groups, discovering key person in social communities and so on. We use both the association rule learning method and the subgroup discovery method to discover useful patterns from a traffic accident dataset consisting of many features including profile of driver, location of accident, types of accident, information of vehicle, violation of regulation and so on. The association rule learning method, which is one of the unsupervised learning methods, searches for frequent item sets from the data and translates them into rules. In contrast, the subgroup discovery method is a kind of supervised learning method that discovers rules of user specified concepts satisfying certain degree of generality and unusualness. Depending on what aspect of the data we are focusing our attention to, we may combine different multiple relevant features of interest to make a synthetic target feature, and give it to the rule learning algorithms. After a set of rules is derived, some postprocessing steps are taken to make the ruleset more compact and easier to understand by removing some uninteresting or redundant rules. We conducted a set of experiments of mining our traffic accident data in both unsupervised mode and supervised mode for comparison of these rule based learning algorithms. Experiments with the traffic accident data reveals that the association rule learning, in its pure unsupervised mode, can discover some hidden relationship among the features. Under supervised learning setting with combinatorial target feature, however, the subgroup discovery method finds good rules much more easily than the association rule learning method that requires a lot of efforts to tune the parameters.

A Comparative Study on the Acceptability and the Consumption Attitude for Soy Foods between Korean and Canadian University Students (한국과 캐나다 대학생들의 콩가공식품에 대한 수응도 및 소비실태 비교 연구)

  • Ahn Tae-Hyun;Paliyath Gopinadhan
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.51 no.5
    • /
    • pp.466-476
    • /
    • 2006
  • The objective of this study was to compare and analyze the acceptability and consumption attitude for soy foods between Korean and Canadian university students as young consumers. This survey was carried out by questionnaire and the subjects were n=516 in Korea and n=502 in Canada. Opinions for soy foods in terms of general knowledge were that soy foods are healthy (86.5% in Korean and 53.4% in Canadian) or neutral (11.6% in Korean and 42.8% in Canadian), dairy foods can be substituted by soy foods (51.9% in Korean and 41.8% in Canadian), and soy foods are not only for vegetarians and milk allergy Patients but also for ordinary People (94.2% in Korean and 87.6% in Canadian). In main sources of information about soy foods, the rate by commercials on TV, radio or magazine was the highest (58.0%) for Korean students and the rate by family or friend was the highest(35.7%) for Canadian students. In consumption attitude, all of Korean students have purchased soy foods but only 55.4% of Canadian students have purchased soy foods, and soymilk was remarkably recognized and consumed then soy beverage and margarine in order. 76.4% of Korean students and 65.1% of Canadian students think soy foods are general and popular and can purchase easily, otherwise, in terms of price, soy foods were expensively recognized as 'more expensive than dairy foods' was 59.1% (Korean) and 54.7% (Canadian), and 'similar to dairy foods' was 36.8% (Korean) and 39.9% (Canadian). Major reasons for the rare consumption were 'I am not interested in soy foods' in Korean students (27.3%) and 'I prefer dairy foods to soy foods' in Canadian students (51.7%). However, consumption of soy foods in both countries are very positive and it will be increased.

A Study on the Development of Aerobic Exercise Equipment Design for User-Centered -Focusing on Elliptical Cross Trainer- (사용자 중심의 유산소 운동기구 디자인 개발에 관한 연구 -Elliptical Cross Trainer를 중심으로-)

  • Chung, Kyung-Ryul;Song, Bok-Hee;Yoon, Se-Kyun;Park, Il-Woo
    • Archives of design research
    • /
    • v.19 no.5 s.67
    • /
    • pp.129-138
    • /
    • 2006
  • It is expected that the typical lifestyle of the future will be transformed into an opulent and comfortable existence as the quality of life improves due to the increase in household income and reduction in working hours. In the meantime, as the standard of living becomes increasingly more comfortable and plentiful, the toll on physical health becomes magnified as a result of obesity and insufficient exercise caused by super nutrition and change in labor conditions (from physical labor to mental labor). This has instigated a deep awareness in fitness on the part of many people, forcing them to recognize the significance of daily exercise and physical activity. The high annual growth rate in the fitness and athletic apparatus market, which is more than 20%, is attributed to this phenomenon. The Elliptical Cross Trainer(ECT), which has drawn wide attention recently, is a non-impact athletic apparatus that not only promotes exercise of the upper body parts in such sports as skiing but also the exercise of lower parts of the body on a treadmill. It is a type of cross training athletic gear that has been developed for aerobic exercise throughout the entire body. It has already formed a market as big as that of the treadmill in Europe, America, etc. Recently, its demand is growing sharply in the Korean markets as well as those in Northeast Asian countries, Despite such demand increase and expansion, since most of the expensive ECTs are exclusively supplied by suppliers in only a few advanced countries, localization of the ECT is urgently required in order to enhance competitiveness of Korean manufacturers and to expand the market. This paper introduces the process and results of a design-engineering cooperative study that was peformed for the development of the ECT.

  • PDF