• Title/Summary/Keyword: 사용량

Search Result 2,855, Processing Time 0.031 seconds

A study of analytical method for Benzo[a]pyrene in edible oils (식용유지 중 벤조피렌 분석법 비교 연구)

  • Min-Jeong Kim;jun-Young Park;Min-Ju Kim;Eun-Young Jo;Mi-Young Park;Nan-Sook Han;Sook-Nam Hwang
    • Analytical Science and Technology
    • /
    • v.36 no.6
    • /
    • pp.291-299
    • /
    • 2023
  • The benzo[a]pyrene in edible oils is extracted using methods such as Liquid-liquid, soxhlet and ultrasound-assisted extraction. However these extraction methods have significant drawbacks, such as long extraction time and large amount of solvent usage. To overcome these drawbacks, this study attempted to improve the current complex benzo[a]pyrene analysis method by applying the QuEChERS (Quick, Easy, Cheap, Effective, Rugged and Safe) method that can be analyzed in a simple and short time. The QuEChERS method applied in this study includes extraction of benzo[a]pyrene into n-hexane saturated acetonitrile and n-hexane. After extraction and distribution using magnesium sulfate and sodium chloride, benzo[a]pyrene is analyzed by liquid chromatography with fluorescence detector (LC/FLR). As a result of method validation of the new method, the limit of detection (LOD) and quantification (LOQ) were 0.02 ㎍/kg and 0.05 ㎍/kg, respectively. The calibration curves were constructed using five levels (0.1~10 ㎍/kg) and coefficient (R2) was above 0.99. Mean recovery ratio was ranged from 74.5 to 79.3 % with a relative standard deviation (RSD) between 0.52 to 1.58 %. The accuracy and precision were 72.6~79.4 % and 0.14~7.20 %, respectively. All results satisfied the criteria ranges requested in the Food Safety Evaluation Department guidelines (2016) and AOAC official method of analysis (2023). Therefore, the analysis method presented in this study was a relatively simple pretreatment method compared to the existing analysis method, which reduced the analysis time and solvent use to 92 % and 96 %, respectively.

Stone Industry of Domestic and Foreign in 2021 (2021년 국내외 석재산업 동향 분석)

  • Kwang-Seok Chea;Namin Koo;Junghwa Chun;Heem Moon Yang;Ki-Hyung Park
    • Korean Journal of Mineralogy and Petrology
    • /
    • v.37 no.1
    • /
    • pp.1-11
    • /
    • 2024
  • World stone production in 2021 stood at 162.5 million tons, up by 7.5 million tons, or 4.8 percent, compared to the previous year when the production came in at 155 million tons. Six top countries with the most of stone production were China, India, Turkey, Brazil, Iran and Italy and these six countries accounted for 72.8 percent of total production in the world. Stone exports stood at $21.68 billion in 2021, up by $2.3 billion from the previous year. Exports of raw materials and processed stones stood at 54.4 million tons, up by 2.98 million tons from the previous year. In terms of aggregate exports, exports of natural stones increased by $2.3 billion to $21.7 billion while exports of artificial stones rose $2.6 billion to $13.6 billion in 2021 compared to the previous year. The average price of stone (Code: 68.02) was up by $65.2 per ton to $794.82. The price of board, processed stone, an ingredient for building materials, increased by $3.52 per square meter to $42.96 per square meter. Recycling was always the problem as the volume of the total quarry was 333.5 million tons, of which only 28.8 percent were finished products and the remaining 71.2 percent were waste generated from stone extraction and processing. Korea's stone exports stood at $1.97 million in 2021, down 38.3 percent on year, while imports were up 8.6 percent to $758.9 million. Stone exports are expected to grow to 66.1 million tons in 2025, while usage is expected to reach 108.92 million tons, or 2 billion square meters.

Analysis of domestic water usage patterns in Chungcheong using historical data of domestic water usage and climate variables (생활용수 실적자료와 기후 변수를 활용한 충청권역 생활용수 이용량 패턴 분석)

  • Kim, Min Ji;Park, Sung Min;Lee, Kyungju;So, Byung-Jin;Kim, Tae-Woong
    • Journal of Korea Water Resources Association
    • /
    • v.57 no.1
    • /
    • pp.1-8
    • /
    • 2024
  • Persistent droughts due to climate change will intensify water shortage problems in Korea. According to the 1st National Water Management Plan, the shortage of domestic and industrial waters is projected to be 0.07 billion m3/year under a 50-year drought event. A long-term prediction of water demand is essential for effectively responding to water shortage problems. Unlike industrial water, which has a relatively constant monthly usage, domestic water is analyzed on monthly basis due to apparent monthly usage patterns. We analyzed monthly water usage patterns using water usage data from 2017 to 2021 in Chungcheong, South Korea. The monthly water usage rate was calculated by dividing monthly water usage by annual water usage. We also calculated the water distribution rate considering correlations between water usage rate and climate variables. The division method that divided the monthly water usage rate by monthly average temperature resulted in the smallest absolute error. Using the division method with average temperature, we calculated the water distribution rates for the Chungcheong region. Then we predicted future water usage rates in the Chungcheong region by multiplying the average temperature of the SSP5-8.5 scenario and the water distribution rate. As a result, the average of the maximum water usage rate increased from 1.16 to 1.29 and the average of the minimum water usage rate decreased from 0.86 to 0.84, and the first quartile decreased from 0.95 to 0.93 and the third quartile increased from 1.04 to 1.06. Therefore, it is expected that the variability in monthly water usage rates will increase in the future.

Mineralogical Analysis of Calcium Silicate Cement according to the Mixing Rate of Waste Concrete Powder (폐콘크리트 미분말 치환율에 따른 이산화탄소 반응경화 시멘트의 광물상 분석)

  • Lee, Hyang-Sun;Song, Hun
    • Journal of the Korea Institute of Building Construction
    • /
    • v.24 no.2
    • /
    • pp.181-191
    • /
    • 2024
  • In the realm of cement manufacturing, concerted efforts are underway to mitigate the emission of greenhouse gases. A significant portion, approximately 60%, of these emissions during the cement clinker sintering process is attributed to the decarbonation of limestone, which serves as a fundamental ingredient in cement production. Prompted by these environmental concerns, there is an active pursuit of alternative technologies and admixtures for cement that can substitute for limestone. Concurrently, initiatives are being explored to harness technology within the cement industry for the capture of carbon dioxide from industrial emissions, facilitating its conversion into carbonate minerals via chemical processes. Parallel to these technological advances, economic growth has precipitated a surge in construction activities, culminating in a steady escalation of construction waste, notably waste concrete. This study is anchored in the innovative production of calcium silicate cement clinkers, utilizing finely powdered waste concrete, followed by a thorough analysis of their mineral phases. Through X-ray diffraction(XRD) analysis, it was observed that increasing the substitution level of waste concrete powder and the molar ratio of SiO2 to (CaO+SiO2) leads to a decrease in Belite and γ-Belite, whereas minerals associated with carbonation, such as wollastonite and rankinite, exhibited an upsurge. Furthermore, the formation of gehlenite in cement clinkers, especially at higher substitution levels of waste concrete powder and the aforementioned molar ratio, is attributed to a synthetic reaction with Al2O3 present in the waste concrete powder. Analysis of free-CaO content revealed a decrement with increasing substitution rate of waste concrete powder and the molar ratio of SiO2/(CaO+SiO2). The outcomes of this study substantiate the viability of fabricating calcium silicate cement clinkers employing waste concrete powder.

Effect of organic fertilizer application on soil carbon accumulation (유기질비료의 사용이 작물의 생육, 토양화학성 및 토양탄소 축적량에 미치는 영향)

  • Yu Na Lee;Dong Won Lee;Jin Ju Yun;Jae Hong Shim;Sang Ho Jeon;Yun Hae Lee;Soon Ik Kwon;Seong Heon Kim
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.32 no.1
    • /
    • pp.5-11
    • /
    • 2024
  • Objective of this study was to evaluate the effect of organic fertilizer application on yield, soil chemical properties and soil organic carbon (SOC) in Korean cabbage cultural field. The experimental treatments consisted of none fertilizer (NF), NPK (inorganic fertilizer, N-P2O5-K2O : 320-78-198 kg ha-1), Organic fertilizer (OF 50, 100, 150% on application rate of standard 110 kg ha-1 as N, topdressing: 210 kg ha-1 as inorganic fertilizer). In experimental results, the growth characteristics and yields were not significantly different among the treatments. There was no significant difference in soil pH, available phosphate, ammonium nitrogen and exchangeable potassium, while organic matter, electrical conductivity and nitrate nitrogen were increased when organic fertilizer application. Also, SOC was increased with the application of organic fertilizers. These results showed that pre-application of organic fertilizer might be effective in a carbon storage in the field soil cultivating Korean cabbage.

Monitoring of Sugar and Low-Calorie Sweetener Content in Alcoholic Beverages (유통 주류의 당류 함량 및 저칼로리 감미료 사용 실태 조사)

  • Young-Sun Cho;Jin-A Jeong;Hye-Jung Kwon;Han-Taek Kim;Ji-Yeon Lee;Hye-Won Lim;Eun-Bin Lee;Hye-Jin Kim;Won-Joo Lee;Myung-Jin Lee
    • Journal of Food Hygiene and Safety
    • /
    • v.39 no.3
    • /
    • pp.281-287
    • /
    • 2024
  • This study investigated the total sugar and low-calorie sweetener content in 72 alcoholic beverages. The samples included 10 takjus, 6 yakjus, 5 cheongjus, 5 beers, 12 fruit wines, 5 sojus, 5 general distilled alcoholic beverages, 9 liqueurs, and 15 other alcoholic beverages. Sugar and allulose content were analyzed using HPLC-RI, and the content of five sweeteners was analyzed using HPLC-UV and LC-MSMS. The average sugar content in the alcoholic beverages was 4.13±5.16 g/100 g. When categorized by type, the sugar content ranged from 0.00 to 8.92 g/100 g, 0.00 to 30.55 g/100 g, and 0.14 to 17.02 g/100 g in fermented (takju, yakju, cheongju, beer, and fruit wine), distilled (soju, general distilled alcoholic beverages, and liqueur), and other alcoholic beverages, respectively. Sugar content was the highest in liqueur, with the average content being 12.41±9.66 g/100 g. Among low-calorie sweeteners, acesulfame potassium, sodium saccharin, aspartame, and sucralose were detected in concentrations ranging from 28.6-121.5, 42.3, 34.1-141.5, and 23.3-88.1 mg/kg, respectively. Cyclamate and allulose were not detected in any of the alcoholic beverages. Sweeteners were detected in 24 out of the 72 alcoholic beverages, and their content complied with the standards stipulated for food additives.

Analysis of sustainability changes in the Korean rice cropping system using an emergy approach (에머지 접근법을 이용한 국내 벼농사 시스템의 지속가능성 변화 분석)

  • Yongeun Kim;Minyoung Lee;Jinsol Hong;Yun-Sik Lee;June Wee;Jaejun Song;Kijong Cho
    • Korean Journal of Environmental Biology
    • /
    • v.41 no.4
    • /
    • pp.482-496
    • /
    • 2023
  • Many changes in the scale and structure of the Korean rice cropping system have been made over the past few decades. Still, insufficient research has been conducted on the sustainability of this system. This study analyzed changes in the Korean rice cropping system's sustainability from a system ecology perspective using an emergy approach. For this purpose, an emergy table was created for the Korean rice cropping system in 2011, 2016, and 202, and an emergy-based indicator analysis was performed. The emergy analysis showed that the total emergy input to the rice cropping system decreased from 10,744E+18 sej year-1 to 8,342E+18 sej year-1 due to decreases in paddy field areas from 2011 to 2021, and the proportion of renewable resources decreased by 1.4%. The emergy input per area (ha) was found to have decreased from 13.13E+15 sej ha-1 year-1 in 2011 to 11.89E+15 sej ha-1 year-1 in 2021, and the leading cause was a decrease in nitrogen fertilizer usage and working hours. The amount of emergy used to grow 1 g of rice stayed the same between 2016 and 2021 (specific emergy: 13.3E+09 sej g-1), but the sustainability of the rice cropping system (emergy sustainability index, ESI) continued to decrease (2011: 0.107, 2016: 0.088, and 2021: 0.086). This study provides quantitative information on the emergy input structure and characteristics of Korean rice cropping systems. The results of this study can be used as a valuable reference in establishing measures to improve the ecological sustainability of the Korean rice cropping system.

Annual Energy Demand Analysis of a Lettuce Growing Plant Factory according to the Environmental Changes (상추 재배 식물공장의 환경변화에 따른 연중 에너지 요구량 분석)

  • Eun Jung Choi;Jaehyun Kim;Sang Min Lee
    • Journal of Bio-Environment Control
    • /
    • v.32 no.4
    • /
    • pp.278-284
    • /
    • 2023
  • Recently, a closed-type plant factory has been receiving attention as a advanced agricultural method. It has diverse advantages such as climate-independence, high productivity and stable year-round production. However, high energy cost caused by environmental control system is considered as a challenges of a closed-type plant factory. In order to reduce the energy cost, investigation about energy load which is directly connected to energy consumption needs to be conducted. In this study, energy load changes of a plant factory have been analytically analyzed according to the environmental changes. The target plant factory was a lettuce growing container farm. Firstly, the impact of photoperiod, set temperature and relative humidity change were examined. Under the climate condition of Daejeon in South Korea, increase of photoperiod and set temperature rose a yearly energy demand of a container farm. However, increase of set relative humidity decreased a yearly energy demand. Secondly, the climate environment effect was compared by investigating the energy demand under 9 different climate conditions. As a result, the difference between maximum and minimum value of the yearly energy demand showed 21.7%. Lastly, sensitivity analysis of each parameter (photoperiod, set temperature and relative humidity) has been suggested under 3 different climate conditions. The ratio of heating and cooling demand was varied depending on the climate, so the effect of each parameter became different.

Hydroponic Nutrient Solution and Light Quality Influence on Lettuce (Lactuca sativa L.) Growth from the Artificial Light Type of Plant Factory System (인공광 식물공장에서 수경배양액 및 광질 조절이 상추 실생묘 생장에 미치는 영향)

  • Heo, Jeong-Wook;Park, Kyeong-Hun;Hong, Seung-Gil;Lee, Jae-Su;Baek, Jeong-Hyun
    • Korean Journal of Environmental Agriculture
    • /
    • v.38 no.4
    • /
    • pp.225-236
    • /
    • 2019
  • BACKGROUND: Hydroponics is one of the methods for evaluating plant production using the inorganic nutrient solutions, which is applied under the artificial light conditions of plant factory system. However, the application of the conventional inorganic nutrients for hydroponics caused several environmental problems: waste from culture mediums and high nitrate concentration in plants. Organic nutrients are generally irrigated as a supplementary fertilizer for plant growth promotion under field or greenhouse conditions. Hydroponic culture using organic nutrients derived from the agricultural by-products such as dumped stems, leaves or immature fruits is rarely considered in plant factory system. Effect of organic or conventional inorganic nutrient solutions on the growth and nutrient absorption pattern of green and red leaf lettuces was investigated in this experiment under fluorescent lamps (FL) and mixture Light-Emitting Diodes (LEDs). METHODS AND RESULTS: Single solution of tomatoes (TJ) and kales (K) deriving from agricultural by-products including leaves or stems and its mixed solution (mixture ration 1:1) with conventional inorganic Yamazaki (Y) were supplied for hydroponics under the plant factory system. The Yamazaki solution was considered as a control. 'Jeockchima' and 'Cheongchima' lettuce seedlings (Lactuca sativa L.) were used as plant materials. The seedlings which developed 2~3 true leaves were grown under the light qualities of FL and mixed LED lights of blue plus red plus white of 1:2:1 mixture in energy ratio for 35 days. Light intensity of the light sources was controlled at 180 μmol/㎡/s on the culture bed. The single and mixture nutrient solutions of organic and/or inorganic components which controlled at 1.5 dS/m EC and 5.8 pH were regularly irrigated by the deep flow technique (DFT) system on the culture gutters. Number of unfolded leaves of the seedlings grown under the single or mixed nutrient solutions were significantly increased compared to the conventional Y treatment. Leaf extension of 'Jeockchima' under the mixture LED radiation condition was not affected by Y and YK or YTJ mixture treatments. SPAD value in 'Jeockchima' leaves exposed by FL under the YK mixture medium was approximately 45 % higher than under conventional Y treatment. Otherwise, the maximum SPAD value in the leaves of 'Cheongchima' seedlings was shown in YK treatment under the mixture LED lights. NO3-N contents in Y treatment treated with inorganic nutrient at the end of the experiment were up to 75% declined rather than increased over 60 % in the K and TJ organic treatment. CONCLUSION: Growth of the seedlings was affected by the mixture treatments of the organic and inorganic solutions, although similar or lower dry weight was recorded than in the inorganic treatment Y under the plant factory system. Treatment Y containing the highest NO3-N content among the considered nutrients influenced growth increment of the seedlings comparing to the other nutrients. However effect of the higher NO3-N content in the seedling growth was different according to the light qualities considered in the experiment as shown in leaf expansion, pigmentation or dry weight promotion under the single or mixed nutrients.

Status and Prospect of Herbicide Resistant Weeds in Rice Field of Korea (한국 논에서 제초제 저항성잡초 발생 현황과 전망)

  • Park, Tae-Seon;Lee, In-Yong;Seong, Ki-Yeong;Cho, Hyeon-Suk;Park, Hong-Kyu;Ko, Jae-Kwon;Kang, Ui-Gum
    • Korean Journal of Weed Science
    • /
    • v.31 no.2
    • /
    • pp.119-133
    • /
    • 2011
  • Sulfonylurea (SU)-resistant weeds include seven annual weeds such as Monochoria vaginalis, Scirpus juncoides and Cyperus difformis, etc., and three perennial weeds of Scirpus planiculmis, Sagittaria pigmaea and Eleocharis acicularis as of 2010 since identification Monochoria korsakowii in the reclaimed rice field in 1998. The Echinochloa oryzoides resistant to acetyl CoA carboxylase (ACCase) and acetolactate synthase (ALS) inhibitors has been confirmed in wet-direct seeding rice field of the southern province, Korea in 2009. In the beginning of occurrence of SU-resistant weeds the M. vaginalis, S. juncoides and C. difformis were rapidly and individually spreaded in different fields, however, theses resistant weeds have been occurring simultaneously in the same filed as time goes by. The resistant biotype by weed species demonstrated about 10- to 1,000-fold resistance, base on $GR_{50}$ (50% growth reduction) values of the SU herbicides tested. And the resistant biotype of E. oryzoides to cyhalofop-butyl, pyriminobac-methyl, and penoxsulam was about 14, 8, and 11 times more resistant than the susceptible biotype base on $GR_{50}$ values. In history of paddy herbicides in Korea, the introduction of SU herbicides including besulfuron-metyl and pyrazosulfuron-ethyl that control many troublesome weeds at low use rates and provide excellent crop safety gave farmers and many workers for herbicide business refreshing jolt. The products and applied area of SU-included herbicides have been rapidly increased, and have accounted for about 69% and 96%, respectively, in Korea. The top ten herbicides by applied area were composed of all SU-included herbicides by 2003. The concentrated and successive treatment of ACCase and ALS inhibitors for control of barnyardgrass in direct-seeded rice led up to the resistance of E. oryzoides. Also, SU-herbicides like pyrazosulfuron-ethyl and imazosulfuron which are effective to barnyardgrass can be bound up with the resistance of E. oryzoides. The ALS activity isolated from the resistant biotype of M. korsakowii to SU-herbicides tested was less sensitive than that of susceptible biotype. The concentration of herbicide required for 50% inhibition of ALS activity ($I_{50}$) of the SU-resistant M. korsakowii was 14- to 76-fold higher as compared to the susceptible biotype. No differences were observed in the rates of [$^{14}C$]bensulfuron uptake and translocation. ALS genes from M. vaginalis resistant and susceptible biotypes against SU-herbicides revealed a single amino acid substitution of proline (CCT), at 197th position based on the M. korsakowii ALS sequence numbering, to serin (TCT) in conserved domain A of the gene. Carfentrazone-ethyl and pyrazolate were used mainly to control SU-resistant M. vaginalis by 2006, the early period, in Korea. However, the alternative herbicides such as benzobicyclone, to be possible to control simultaneously the several resistant weeds, have been developing and using broadly because the several resistant weeds have been occurring simultaneously in the same filed. The top ten herbicides by applied area in Korea have been occupied by products of 3-way mixture type including herbicides with alternative mode of action for the herbicide resistant weeds. Mefenacet, fentrazamide and cafenstrole had excellent controlling effects on the ACCase and ALS inhibitors resistant when they were applied within 2 leaf stage.