DOI QR코드

DOI QR Code

Analysis of sustainability changes in the Korean rice cropping system using an emergy approach

에머지 접근법을 이용한 국내 벼농사 시스템의 지속가능성 변화 분석

  • Yongeun Kim (Ojeong Resilience Institute, Korea University) ;
  • Minyoung Lee (Department of Biological Sciences, Ulsan National Institute of Science and Technology) ;
  • Jinsol Hong (Ojeong Resilience Institute, Korea University) ;
  • Yun-Sik Lee (Department of Biology Education, College of Education, Pusan National University) ;
  • June Wee (Ojeong Resilience Institute, Korea University) ;
  • Jaejun Song (Department of Environmental Science and Ecological Engineering, Korea University) ;
  • Kijong Cho (Department of Environmental Science and Ecological Engineering, Korea University)
  • 김용은 (고려대학교 오정리질리언스연구원) ;
  • 이민영 (울산과학기술원 생명과학과) ;
  • 홍진솔 (고려대학교 오정리질리언스연구원) ;
  • 이윤식 (부산대학교 생물교육과) ;
  • 위준 (고려대학교 오정리질리언스연구원) ;
  • 송재준 (고려대학교 환경생태공학과) ;
  • 조기종 (고려대학교 환경생태공학과)
  • Received : 2023.12.01
  • Accepted : 2023.12.22
  • Published : 2023.12.31

Abstract

Many changes in the scale and structure of the Korean rice cropping system have been made over the past few decades. Still, insufficient research has been conducted on the sustainability of this system. This study analyzed changes in the Korean rice cropping system's sustainability from a system ecology perspective using an emergy approach. For this purpose, an emergy table was created for the Korean rice cropping system in 2011, 2016, and 202, and an emergy-based indicator analysis was performed. The emergy analysis showed that the total emergy input to the rice cropping system decreased from 10,744E+18 sej year-1 to 8,342E+18 sej year-1 due to decreases in paddy field areas from 2011 to 2021, and the proportion of renewable resources decreased by 1.4%. The emergy input per area (ha) was found to have decreased from 13.13E+15 sej ha-1 year-1 in 2011 to 11.89E+15 sej ha-1 year-1 in 2021, and the leading cause was a decrease in nitrogen fertilizer usage and working hours. The amount of emergy used to grow 1 g of rice stayed the same between 2016 and 2021 (specific emergy: 13.3E+09 sej g-1), but the sustainability of the rice cropping system (emergy sustainability index, ESI) continued to decrease (2011: 0.107, 2016: 0.088, and 2021: 0.086). This study provides quantitative information on the emergy input structure and characteristics of Korean rice cropping systems. The results of this study can be used as a valuable reference in establishing measures to improve the ecological sustainability of the Korean rice cropping system.

지난 수십 년간 국내 벼농사 시스템은 규모와 구조 측면에서 많은 변화가 있었으나, 이 시스템의 지속가능성에 대한 연구는 충분히 이뤄지지 않았다. 본 연구에서는 에머지 분석방법을 이용하여, 시스템 생태학의 관점에서 국내 벼농사 시스템의 지속가능성 변화를 분석하고자 했다. 이를 위해서, 2011년, 2016년, 2021년의 국내 벼농사 시스템에 대한 에머지 테이블을 작성하고 에머지 기반 지표 분석을 수행하였다. 에머지 분석 결과, 2011~2021년 동안의 논면적 감소에 따라 벼농사 시스템에 투입된 총 에머지는 10,744E+18 sej year-1에서 8,342E+18 sej year-1로 감소했고, 재생가능한 자원의 비율은 1.4% 감소한 것으로 나타났다. 면적당(ha) 투입된 에머지는 2011년 13.13E+15 sej ha-1 year-1에서 2021년 11.89E+15 sej ha-1 year-1로 감소한 것으로 분석되었고, 질소 비료 사용량 및 노동시간의 감소가 주된 원인이었다. 벼 1 g을 재배하는 데 투입되는 에머지는 2016년과 2021년 사이에 변화가 없었으나(specific emergy: 13.3E+09 sej g-1), 벼농사 시스템의 지속가능성(emergy sustainability index, ESI)은 2011년부터 2021년까지 계속해서 낮아진 것으로 나타났다(2011년: 0.107, 2016년: 0.088, 2021년: 0.086). 본 연구는 국내 벼농사 시스템의 에머지 투입 구조 및 특징에 대한 정량적인 정보를 제공했다. 이 연구 결과는 국내 벼농사 시스템의 생태적 지속가능성 향상을 위한 방안을 구축하는 데 중요한 자료로 활용될 수 있을 것이다.

Keywords

Acknowledgement

This research was supported by Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education (RS-2023-00242442). This research was also supported by Core Research Institute Basic Science Research Program through the NRF funded by the Ministry of Education (NRF-2021R1A6A1A10045235).

References

  1. AghaAlikhani M, H Kazemi-Poshtmasari and F Habibzadeh. 2013. Energy use pattern in rice production: A case study from Mazandaran province, Iran. Energy Conv. Manag. 69:157-162. https://doi.org/10.1016/j.enconman.2013.01.034
  2. Ali M, A Marvuglia, Y Geng, D Robins, H Pan, X Song, Z Yu and H Sun. 2019. Accounting emergy-based sustainability of crops production in India and Pakistan over first decade of the 21st century. J. Clean. Prod. 207:111-122. https://doi.org/10.1016/j.jclepro.2018.09.236
  3. Amiri Z, MR Asgharipour, DE Campbell, K Azizi, E Kakolvand and EH Moghadam. 2021. Conservation agriculture, a selective model based on emergy analysis for sustainable production of shallot as a medicinal-industrial plant. J Clean. Prod. 292:126000. https://doi.org/10.1016/j.jclepro.2021.126000
  4. Asgharipour MR, Z Amiri and DE Campbell. 2020. Evaluation of the sustainability of four greenhouse vegetable production ecosystems based on an analysis of emergy and social characteristics. Ecol. Model. 424:109021. https://doi.org/10.1016/j.ecolmodel.2020.109021
  5. Brandt-Williams S. 1999. Evaluation of watershed control of two Central Florida Lakes: Newnans Lake and Lake Weir. Ph.D. Dissertation. Environmental Engineering Sciences, University of Florida. Gainesville, Florida, USA.
  6. Brown MT and J Arding. 1991. Transformities Working Paper. Center for Wetlands, University of Florida. Gainesville, Florida, USA.
  7. Brown MT and S Ulgiati. 2004. Energy quality, emergy, and transformity: H.T. Odum's contributions to quantifying and understanding systems. Ecol. Model. 178:201-213. https://doi.org/10.1016/j.ecolmodel.2004.03.002
  8. Brown MT and S Ulgiati. 2016. Emergy assessment of global renewable sources. Ecol. Model. 339:148-156. https://doi.org/10.1016/j.ecolmodel.2016.03.010
  9. Brown MT, DE Campbell, C de Vilbiss and S Ulgiati. 2016. The geobiosphere emergy baseline: A synthesis. Ecol. Model. 339:92-95. https://doi.org/10.1016/j.ecolmodel.2016.03.018
  10. Brown MT, G Protano and S Ulgiati. 2011. Assessing geobiosphere work generating global reserves of coal, crude oil, and natural gas. Ecol. Model. 222:879-887. https://doi.org/10.1016/j.ecolmodel.2010.11.006
  11. Chen Y, C Liu, J Chen, N Hu and L Zhu. 2021. Evaluation on environmental consequences and sustainability of three rice-based rotation systems in Quanjiao, China by an integrated analysis of life cycle, emergy and economic assessment. J. Clean. Prod. 310:127493. https://doi.org/10.1016/j.jclepro.2021.127493
  12. Cristiano S. 2021. Organic vegetables from community-supported agriculture in Italy: Emergy assessment and potential for sustainable, just, and resilient urban-rural local food production. J. Clean. Prod. 292:126015. https://doi.org/10.1016/j.jclepro.2021.126015
  13. Devkota KP, E Pasuquin, A Elimido-Mabilangan, R Dikitanan, GR Singleton, AM Stuart, D Vithoonjit, L Vidiyangkura, AB Pustika, R Afriani, CL Listyowati, RSK Keerthisena, NT Kieu, AJ Malabayabas, R Hu, J Pan and SEJ Beebout. 2019. Economic and environmental indicators of sustainable rice cultivation: A comparison across intensive irrigated rice cropping systems in six Asian countries. Ecol. Indic. 105:199-214. https://doi.org/10.1016/j.ecolind.2019.05.029
  14. EGIS. 2023. Environmental Geographic Information Service. Ministry of Environment. Sejong, Korea. https://egis.me.go.kr. Accessed October 13, 2023.
  15. Eyni-Nargeseh H, MR Asgharipour, S Rahimi-Moghaddam, A Gilani, AM Damghani and K Azizi. 2023. Which rice farming system is more environmentally friendly in Khuzestan province, Iran? A study based on emergy analysis. Ecol. Model. 481:110373. https://doi.org/10.1016/j.ecolmodel.2023.110373
  16. FAO. 2018. Rice Market Monitor. Volume 21. Food and Agriculture Organization of the United Nations. Rome, Italy.
  17. Garrant JR. 1992. The Atmospheric Boundary Layer. Cambridge Atmospheric and Space Science Series. Cambridge University Press. Cambridge, UK. p. 316.
  18. Jeong OY, HS Park, MK Baek, WJ Kim, GM Lee, CM Lee, M Bombay, MB Ancheta and JH Lee. 2021. Review of rice in Korea: current status, future prospects, and comparisons with rice in other countries. J. Crop Sci. Biotechnol. 24:1-11. https://doi.org/10.1007/s12892-020-00053-6
  19. He S, D Zhu, Y Chen, X Liu, Y Chen and X Wang. 2020. Application and problems of emergy evaluation: A systemic review based on bibliometric and content analysis methods. Ecol. Indic. 114:106304. https://doi.org/10.1016/j.ecolind.2020.106304
  20. Jarvis A, HI Reuter, A Nelson and E Guevara. 2008. Hole-filled SRTM for the globe version 4. International Centre for Tropical Agriculture. Palmira, Colombia. http://srtm.csi.cgiar.org. Accessed October 13, 2023.
  21. KEEI. 2022. Yearbook of Energy Statistics. Korea Energy Economics Institute. Ulsan, Korea.
  22. Kim HC, JH Hwang and SG Baek. 2019. National Geothermal Flow Distribution Map_1.7 million Scale. Korea Institute of Geoscience and Mineral Resources. Daejeon, Korea. https://doi.org/10.22747/data.20201218.1512
  23. Kim J, M Kim, H Oh and J Kim. 2020. Spatial data of soil erosion in Korea. Geo Data 2:7-12. https://doi.org/10.22761/329/DJ2020.01.01.002
  24. Kim YJ, HD Kim and JH Jeon. 2014. Characteristics of water budget components in paddy rice field under the Asian Monsoon Climate: Application HSPH-Paddy Model. Water 6:2041-2055. https://doi.org/10.3390/w6072041
  25. KMA. 2023. KMA Weather Data Service. Korea Meteorological Administration. Daejeon, Korea. https://data.kma.go.kr/resources/html/en/aowdp.html. Accessed October 13, 2023.
  26. KOSIS. 2023. Statistics by Topic. Korean Statistical Information Service. Daejeon, Korea. https://kosis.kr/statisticsList/statisticsListIndex.do?vwcd=MT_ZTITLE&menuId=M_01_01. Accessed October 13, 2023.
  27. Lee H, WK Lee and JG Kim. 2005. Emergy analysis of Korean agriculture. Korean J. Environ. Agric. 24:169-179. https://doi.org/10.5338/KJEA.2005.24.2.169
  28. Lee JG, MH Park, MS Kim, TG Lee, HI Jung and S Jeon. 2021. Assessing changes in soil organic matter accumulation of agricultural field from 2013 to 2020 in South Korea. Korean J. Soil Sci. Fert. 54:391-400. https://doi.org/10.7745/KJSSF.2021.54.4.391
  29. Lewandowska-Czarnecka A, LS Buller, A Nienartowicz and A Piernik. 2019. Energy and emergy analysis for assessing changes in Polish agriculture since the accession to the European Union. Ecol. Model. 412:108819. https://doi.org/10.1016/j.ecolmodel.2019.108819
  30. Li Y, G Cai, K Tan, R Zeng, X Chen and X Wang. 2023. Emergy-based efficiency and sustainability assessments of diversified multi-cropping systems in South China. J. Clean. Prod. 414:137660. https://doi.org/10.1016/j.jclepro.2023.137660
  31. Liu Z, Y Wang, Y Geng, R Li, H Dong, B Xue, T Yang and S Wang. 2019. Toward sustainable crop production in China: An emergy-based evaluation. J. Clean. Prod. 206:11-26. https://doi.org/10.1016/j.jclepro.2018.09.183
  32. MDIS. 2023. Dataset Provided by Topic. MicroData Integrated Service. Statistics Korea. Daejeon, Korea. https://mdis.kostat.go.kr/ofrData/selectClsOfrData.do. Accessed October 13, 2023.
  33. NEAD. 2015. National Environmental Accounting Database V2.0. http://www.emergy-nead.com/home. Accessed October 13, 2023.
  34. NGIC. 2023. Groundwater Yearbook. National Groundwater Information Center. Daejeon, Korea. https://www.gims.go.kr/waterAnnals.do?tgu=A. Accessed October 13, 2023.
  35. Odum HT. 1994. Ecological and General Systems, An Introduction to Systems Ecology. University of Colorado Press. Niwot, Colorado.
  36. Odum HT. 1996. Environmental Accounting: Emergy and Environmental Decision Making. John Wiley & Sons. New York.
  37. Pan H, X Zhang, Y Wang, Y Qi, J Wu, L Lin, H Peng, H Qi, X Yu and Y Zhang. 2016. Emergy evaluation of an industrial park in Sichuan Province, China: A modified emergy approach and its application. J. Clean. Prod. 135:105-118. https://doi.org/10.1016/j.jclepro.2016.06.102
  38. Ray DK, JS Gerber, GK MacDonald and PC West. 2015. Climate variation explains a third of global crop yield variability. Nat. Commun. 6:5989. https://doi.org/10.1038/ncomms6989
  39. Schneider P and F Asch. 2020. Rice production and food security in Asian Mega deltas - A review on characteristics, vulnerabilities and agricultural adaptation options to cope with climate change. J. Agron. Crop Sci. 206:491-503. https://doi.org/10.1111/jac.12415
  40. Shen X, L Zhang and J Zhang. 2021. Ratoon rice production in central China: Environmental sustainability and food production. Sci. Total Environ. 764:142850. https://doi.org/10.1016/j.scitotenv.2020.142850
  41. Susaki J, Y Yasuoka, K Kajiwara, Y Honda and K Hara. 2007. Validation of MODIS albedo products of paddy fields in Japan. IEEE Trans. Geosci. Remote Sensing 45:206-217. https://doi.org/10.1109/TGRS.2006.882266
  42. WAMIS. 2023. Agricultural Water Use. Water Resources Management Information System. http://www.wamis.go.kr. Accessed October 13, 2023.
  43. Wang Q, Z Ma, Q Ma, M Liu, X Yuan, R Mu, J Zuo, J Zhang and S Wang. 2019. Comprehensive evaluation and optimization of agricultural system: An emergy approach. Ecol. Indic. 107:105650. https://doi.org/10.1016/j.ecolind.2019.105650
  44. Wang X, W Tan, S Zhou, Y Xu, T Cui, H Gao, M Chen, X Dong, H Sun, J Yang, Y Wu, F Kong, M Zhan, J Pan, Y Wang, X Wang, N Luo, S Huang, G Mi, D Zhang, J Yuan, X Chen, Q Meng and P Wang. 2021. Converting maize production with low emergy cost and high economic return for sustainable development. Renew. Sust. Energ. Rev. 136:110443. https://doi.org/10.1016/j.rser.2020.110443
  45. Xiao X, Q Wang, Q Guan, W Shao, H Luo, Y Shan and J Mi. 2022. Assessing the sustainability of ecosystems over fourteen years of cultivation in Longnan City of China based on emergy analysis method. J. Environ. Manage. 307:114513. https://doi.org/10.1016/j.jenvman.2022.114513
  46. Xiong L and W Wu. 2022. Can additional agricultural resource inputs improve maize yield, resource use efficiencies and emergy based system efficiency under ridge-furrow with plastic film mulching? J. Clean. Prod. 379:134711. https://doi.org/10.1016/j.jclepro.2022.134711
  47. Yang T, Y Sun, X Li and Q Li. 2021. An ecosystem elasticity perspective of paddy ecosystem sustainability evaluation: The case of China. J. Clean. Prod. 295:126292. https://doi.org/10.1016/j.jclepro.2021.126292
  48. Yuan S, BA Linquist, LT Wilson, KG Cassman, AM Stuart, V Pede, B Miro, K Saito, N Agustiani, VE Aristya, LY Krisnadi, AJ Zanon, AB Heinemann, G Carracelas, N Subash, PS Brahmanand, T Li, S Peng and P Grassini. 2021. Sustainable intensification for a larger global rice bowl. Nat. Commun. 12:7163. https://doi.org/10.1038/s41467-021-27424-z
  49. Zhong S, Y Geng, H Kong, B Liu, X Tian, W Chen, Y Qian and S Ulgiati. 2018. Emergy-based sustainability evaluation of Erhai Lake Basin in China. J. Clean. Prod. 178:142-153. https://doi.org/10.1016/j.jclepro.2018.01.019