DOI QR코드

DOI QR Code

Status and Prospect of Herbicide Resistant Weeds in Rice Field of Korea

한국 논에서 제초제 저항성잡초 발생 현황과 전망

  • 박태선 (농촌진흥청 국립식량과학원) ;
  • 이인용 (농촌진흥청 국립농업과학원) ;
  • 성기영 (농촌진흥청 국립식량과학원) ;
  • 조현숙 (농촌진흥청 국립식량과학원) ;
  • 박홍규 (농촌진흥청 국립식량과학원) ;
  • 고재권 (농촌진흥청 국립식량과학원) ;
  • 강위금 (농촌진흥청 국립식량과학원)
  • Received : 2011.06.01
  • Accepted : 2011.06.17
  • Published : 2011.06.30

Abstract

Sulfonylurea (SU)-resistant weeds include seven annual weeds such as Monochoria vaginalis, Scirpus juncoides and Cyperus difformis, etc., and three perennial weeds of Scirpus planiculmis, Sagittaria pigmaea and Eleocharis acicularis as of 2010 since identification Monochoria korsakowii in the reclaimed rice field in 1998. The Echinochloa oryzoides resistant to acetyl CoA carboxylase (ACCase) and acetolactate synthase (ALS) inhibitors has been confirmed in wet-direct seeding rice field of the southern province, Korea in 2009. In the beginning of occurrence of SU-resistant weeds the M. vaginalis, S. juncoides and C. difformis were rapidly and individually spreaded in different fields, however, theses resistant weeds have been occurring simultaneously in the same filed as time goes by. The resistant biotype by weed species demonstrated about 10- to 1,000-fold resistance, base on $GR_{50}$ (50% growth reduction) values of the SU herbicides tested. And the resistant biotype of E. oryzoides to cyhalofop-butyl, pyriminobac-methyl, and penoxsulam was about 14, 8, and 11 times more resistant than the susceptible biotype base on $GR_{50}$ values. In history of paddy herbicides in Korea, the introduction of SU herbicides including besulfuron-metyl and pyrazosulfuron-ethyl that control many troublesome weeds at low use rates and provide excellent crop safety gave farmers and many workers for herbicide business refreshing jolt. The products and applied area of SU-included herbicides have been rapidly increased, and have accounted for about 69% and 96%, respectively, in Korea. The top ten herbicides by applied area were composed of all SU-included herbicides by 2003. The concentrated and successive treatment of ACCase and ALS inhibitors for control of barnyardgrass in direct-seeded rice led up to the resistance of E. oryzoides. Also, SU-herbicides like pyrazosulfuron-ethyl and imazosulfuron which are effective to barnyardgrass can be bound up with the resistance of E. oryzoides. The ALS activity isolated from the resistant biotype of M. korsakowii to SU-herbicides tested was less sensitive than that of susceptible biotype. The concentration of herbicide required for 50% inhibition of ALS activity ($I_{50}$) of the SU-resistant M. korsakowii was 14- to 76-fold higher as compared to the susceptible biotype. No differences were observed in the rates of [$^{14}C$]bensulfuron uptake and translocation. ALS genes from M. vaginalis resistant and susceptible biotypes against SU-herbicides revealed a single amino acid substitution of proline (CCT), at 197th position based on the M. korsakowii ALS sequence numbering, to serin (TCT) in conserved domain A of the gene. Carfentrazone-ethyl and pyrazolate were used mainly to control SU-resistant M. vaginalis by 2006, the early period, in Korea. However, the alternative herbicides such as benzobicyclone, to be possible to control simultaneously the several resistant weeds, have been developing and using broadly because the several resistant weeds have been occurring simultaneously in the same filed. The top ten herbicides by applied area in Korea have been occupied by products of 3-way mixture type including herbicides with alternative mode of action for the herbicide resistant weeds. Mefenacet, fentrazamide and cafenstrole had excellent controlling effects on the ACCase and ALS inhibitors resistant when they were applied within 2 leaf stage.

2010년까지 국내 논에서 설포닐우레아(sulfonylurea : SU)계 제초제들에 대한저항성잡초로 확인된 잡초들 1998년도에 충남서산 간척지 논에서 물옥잠이 확인이후 일년생 물달개비, 올챙이고랭이, 알방동사니 등 7초종, 다년생 올미, 새섬매자기 등 다년생 잡초 3초종이 발생하여 총 10초종이다. 그리고 2009년 ACCase 및 ALS 저해제들에 대한 저항성 피가 담수직파 논의 서 남부지역에서 처음 확인되었다. 초기에는 SU계 제초제들에 대한 저항성잡초들인 물달개비, 올챙이고랭이, 알방동사니 등은 하나의 논 필지에 하나의 초종들이 발생을 하였으나 최근에는 하나의 필지에 다수의 초종들이 동시적으로 발생하고 있다. 2008년도에 전국 861필지의 논에서 채취한 토양에서 발생하고 있는 물달개비 및 올챙이고랭이의 저항성 비율은 각각 42% 및 23%로 나타났다. 저항성잡초들의 생체중을 50% 억제한 농도($GR_{50}$)는 저항성 계통이 감수성 계통에 비해 수 십배에서 수 천배 높게 나타났다. ACCase 및 ALS 저해 제초제들인 cyhalofopbutyl, pyriminobac-methyl, penoxsulam 저항성 강피에 대한 저항성 계통의 $GR_{50}$은 감수성 계통에 비해 각각 14, 8, 11배나 높게 나타났다. 한국의 논에서 제초제 저항성의 다발생과 확산의 원인은 크게 잡초측면과 제초제 측면으로 구분할 수 있다. 잡초측면에서는 종자생산량과 발아율이 높은 잡초들 즉 물달개비, 올챙이고랭이 등이 저항성잡초로 변화한다. 그리고 제초제 측면은 저항성잡초 유발의 원인인 선택성이 탁월하고 약효지속성이 매우 긴 SU계 제초제들의 광범위한 사용이다. SU계 제초제들의 생산 품목들과 처리 논 면적의 비율은 각각 69%와 96%이다. 그리고 2003년까지 처리면적으로 본 선호도 10위까지 제초제들은 대부분 SU계 제초제들이 혼합된 "일발처리제"들이다. 직파재배 논에서 ACCase 및 ALS들이 혼합된 제초제들의 연용은 제초제 저항성 피를 유발하였고, 이는 피에 효과적인 SU계 제초제들인 pyrazosulfuron-ethyl 및 imazosulfuron과 무관하지 않다. SU계 제초제들에 대한 물옥잠의 저항성 계통의 $I_{50}$은 감수성 계통에 비해서 14배에서 76배 높았는데, 이는 제초제의 흡수 및 이행에 의한 차이보다는 ALS 유전자의 점 돌연변이(point mutation)에 의한 것으로 나타났다. 즉 ALS 유전자 아미노산 197번째 proline이 serine로 변화되었기 때문이다. 제초제 저항성잡초 방제로 benzobicyclone, bromobutide 등은 광엽 및 방동사니과 잡초들을 동시에 방제가 가능하다. 그리고 ACCase 및 ALS 저항성 피의 방제는 mefenacet, fentrazamide, cafenstrole로 2엽기까지 방제가 가능하다. 그러나 앞으로 국내 논에서 제초제 저항성잡초 및 관리에 대해서는 많은 문제점들을 내포하고 있다. 첫째, 현재까지 제초제 저항성 유발 약제들인 ALS 및 ACCase 저해제들의 사용량이 증가하기 때문에 제초제 저항성 잡초들은 계속 발생할 뿐만 아니라 더욱 빠른 속도로 확산할 것이다. 둘째, 미국, 유럽, 호주 등 선진국들과 같은 제초제 저항성잡초를 연구할 수 있는 전문 연구기관과 인력이 부족하다.

References

  1. Adkins, S. W., D. Wills, M. Boersma, S. R. Walker, G. Robinson, R. J. McLeod and J. P. Einam. 1997. Weeds resistant to chlorsulfuron and atrazine from the north-east grain region of Australia. Weed Res. 37:343-349. https://doi.org/10.1046/j.1365-3180.1997.d01-56.x
  2. Anderson, D. D., F. W. Roeth and A. R. Martin. 1996. Occurrence and control of triazine-resistant common waterhemp (Amaranth usrudis) in field corn (Zea mays). Weed Tech. 10:570-575.
  3. Bernal, E. V., R. R. Charles and C. C. John. 2000. Prevention and management of herbicide resistant weeds in rice. In. Experiences from Central America with Echinochloa colona. Tropical Agricultural Centre for Research and Higher Education (CATIE), Costa Rica. 123 p.
  4. Caroline, S. 1991. Sulfonylurea herbicides. PJB publications. pp. 51-60.
  5. Cavan, G., and S. Moss R. 1997. Herbicide resistance and gene flow in black-grass (Alopecurus myosuroides) and wild-oats (Avena spp.). In. Brighton Crop Protection Conference:Weeds. Proceedings of an International Conference, Brighton, UK, 17-20 November 1997. 1:305-310.
  6. Durner, J., V. Gailus and P. Boger. 1991. New aspects on inhibition of plant acetolactate synthase by chlorsulfuron and imazaquin. Plant Physiol. 95:1144-1150. https://doi.org/10.1104/pp.95.4.1144
  7. Gressel, J., and L. A. Segel. 1990. Modelling for the effectiveness of herbicide rotations and mixtures as strategies to delay or preclude resistance. Weed Tech. 4:186-198. https://doi.org/10.1017/S0890037X00025215
  8. Heap, I. 1997. The occurrence of herbicide-resistant weeds worldwide. Pestic. Sci. 51:235-243. https://doi.org/10.1002/(SICI)1096-9063(199711)51:3<235::AID-PS649>3.0.CO;2-N
  9. Heap, I. 2011. International survey of herbicide resistant weeds. http://www.weedscience.org/in.asp
  10. Hensley, J. R. 1981. A method for identification of triazine resistant and susceptible biotypes of several weeds. Weed Sci. 29:70-73.
  11. Im, I. B. 2009. Control and emergence of herbicide resistant Echinochloa oryzicola in paddy field of Korea. Kor. J. Weed Sci. 29(Supp. 2):103-104.
  12. Im, Su-Hyeon, Min-Won Park, Min-Jeong Yook and Do-Soon Kim. 2009. Resistance ACCase inhibitor cyhalofop-butyl Echnochloa crus-galli collected in Seosan, Korea. Kor. J. Weed Sci. 29(2):178-184.
  13. Itoh, K. 2000. Relationship between breeding system and gene dispersal of sulfonylurea resistant paddy weeds. In. 3rd International Weed Science Congress held at Foz Do Iguassu, Brazil. pp. 144-145.
  14. Koarai, A. 2000. Dianosis of susceptibility of sulfonylurea herbicides on Monochoria vaginalis, an annual paddy weed in Japan. J. Weed Sci. & Tech. 45 suppl(1):40-41. https://doi.org/10.3719/weed.45.Supplement_40
  15. Kohara, H., K. Konno and M. Takekawa. 1999. Occurrence of sulfonylurea resistant biotypes of Scripus juncodies Roxb. var. ohwianus T. Koyama in paddy fields of Hokkaido prefecture, Japan. J. Weed Sci. &. Tech. 44(3):228-235. https://doi.org/10.3719/weed.44.228
  16. Korea Crop Protection Association. 2010. http://www.koreacpa.org/
  17. Kuk Yong In. 2002. Control of sulfonylurea herbicide-resistant Lindernia dubia in Korea rice culture. Korean J. Crop Sci. 47(4):328-334.
  18. LeBaron, H. M. 1991. Distribution and seriousness of of herbicide-resistant weed infestarion worldwide. pp. 27-55. In. J. C. Caseley, G. W. Cussans, and R. K. Atkin, Herbicide resistance in Weeds and Crops. Butterworth Heinemann, Oxford.
  19. Lovell, S. T., L. M. Wax, D. M. Simpson and M. McGlamery. 1996. Using the in vivo acetolactate synthase (ALS) assay for identifying herbicide-resistant weeds. Weed Tech. 10:936-942.
  20. Ohmes, G. A., Jr., and J. Kendig A. 1999. Inheritance of an ALS -cross-resistant common cocklebur (Xanthium strumarium) biotype. Weed Tech. 13:100-103 https://doi.org/10.1017/S0890037X00044985
  21. Park, T. S., C. S. Kim, J. P. Park, Y. K. Oh and K. U. Kim. 1999. Resistant biotype of Monochoria korsakowii against sulfonylurea herbicides in the reclaimed paddy fields in Korea. Proc. 17th APWSS Conf. 251-254, Bankok.
  22. Park, T. S., C. S. Kim, B. C. Moon, I. Y. Lee, S. T. Lim, J. E. Park and K. U. Kim. 2001. Occurrence and control of Lindernia dubia (L.) Pennell var. dubia, Sulfonylurea resistant biotype in paddy fields in southern area of Korea. Kor. J. Weed Sci. 21(1):33-41.
  23. Park, T. S., Y. B. Lhm, K. S. Kyung, S. H. Lee, J. E. Park, T. W. Kim and K. U. Kim. 2003. Mechanism of sulfonylurea herbicide resistance in broadleaf weed, Monochoria korsakowii. Kor. J. Pesticide Sci. 7(4):239-247.
  24. Park, T. S. 2004. Identification of sulfonylurea-resistant biotype of Scirpus planiculmis. Pesticide Sci.(Korean). 8(4):332-337.
  25. Park, T. S., B. I. Koo, S. K. Kang, M. K. Choi, H. K. Park, K. B. Lee and J. K. Ko. 2010. Response of the resistant biotype of Echinochloa oryzicola to ACCase and ALS inhibitors, and effect of alternative herbicides. Kor. J. Weed Sci. 30(3):291-299. https://doi.org/10.5660/KJWS.2010.30.3.291
  26. Saari, L. L., J. C. Cotterman and M. M. Primiani. 1990. Mechanism of sulfonylurea herbicide resistance in the broadleaf weed, Kochia scoparia. Plant Physiol. 93:55-61. https://doi.org/10.1104/pp.93.1.55
  27. Smith, M., C. A., D. C. Thill, M. J. Dial and R. S. Zemetra. 1990. Inheritance of sulfonylurea herbicide resistance in Lactuca spp. Weed Tech. 4:787-790. https://doi.org/10.1017/S0890037X00026403
  28. Uchino, Guang-Xi Wang and K. Itoh. 2000. Sulfonylurea resistant biotypes of Lindernia species in the Tohoku region and their response to several herbicides. Weed Res.(Japan). 45(1):13-20.
  29. Yoshida, S., K. Onodera, T. Soeda, Y. Takeda, S. Sasaki and H. Watanabe. 1999. Occurrence of Scirpus juncodies subsp. ohwianus, resistant to sulfonylurea herbicides in Miyagi prefecture. J. Weed Sci. & Tech. 44 suppl., 70-71. https://doi.org/10.3719/weed.44.Suppl_70

Cited by

  1. Fact-Finding Survey of Herbicide Use at Farmer's Level and Distribution of Herbicide Resistant Weeds in Paddy Field of Jeonbuk Province, Korea vol.3, pp.4, 2014, https://doi.org/10.5660/WTS.2014.3.4.312
  2. Occurrence Trends of SU-Herbicide Resistant Weeds in Paddy Fields in Korea vol.2, pp.3, 2013, https://doi.org/10.5660/WTS.2013.2.3.318
  3. Comparison of Weed Characteristics and Possibility of Gene Flow in GM Rice vol.32, pp.1, 2012, https://doi.org/10.5660/KJWS.2012.32.1.10
  4. Herbicidal efficacy of various formulations and application timings of imazosulfuron+fentrazamide mixtures in rice vol.41, pp.1, 2014, https://doi.org/10.7744/cnujas.2014.41.1.017
  5. Physicochemical Properties of Soils as Affected by Minimum Tillage and Direct Seeding Cultivation on Dry Rice Paddy vol.47, pp.1, 2014, https://doi.org/10.7745/KJSSF.2014.47.1.008
  6. Effects of formulation types and application timing of benzobicyclon-mixture on weed control and phytotoxicity of rice vol.40, pp.4, 2013, https://doi.org/10.7744/cnujas.2013.40.4.311
  7. Herbicidal efficacy of benzobicyclon-mixtures and carfentrazone-ethyl-mixtures in direct-seeding flooded rice vol.40, pp.3, 2013, https://doi.org/10.7744/cnujas.2013.40.3.183
  8. Effective Weed Control in Direct Seeded Rice on Puddled Paddy Surface of Southern Region vol.32, pp.1, 2012, https://doi.org/10.5660/KJWS.2012.32.1.57
  9. Changes in Weed Vegetation in Paddy Fields over the Last 50 Years in Korea vol.5, pp.1, 2016, https://doi.org/10.5660/WTS.2016.5.1.1
  10. Occurrence Trends of Herbicide Resistant Weeds in Paddy Fields in Korea vol.32, pp.2, 2012, https://doi.org/10.5660/KJWS.2012.32.2.121
  11. The Distribution and Occurrence of Sulfonylurea-Resistant Weeds in Paddy Fields of Gyeongbuk Province vol.2, pp.2, 2013, https://doi.org/10.5660/WTS.2013.2.2.131
  12. Response of Phytotoxicity on Rice Varieties to HPPD-inhibiting Herbicides in Paddy Rice Fields vol.32, pp.3, 2012, https://doi.org/10.5660/KJWS.2012.32.3.240
  13. Classification According to Site of Action of Paddy Herbicides Registered in Korea vol.3, pp.3, 2014, https://doi.org/10.5660/WTS.2014.3.3.165
  14. Biological Characteristics of New Paddy Field Herbicide Metazosulfuron Granule for Paddy Weeds vol.31, pp.3, 2011, https://doi.org/10.5660/KJWS.2011.31.3.308
  15. Weed Population Distribution and Change of Dominant Weed Species in Paddy Field of Southern Gyeonggi Region vol.3, pp.2, 2014, https://doi.org/10.5660/WTS.2014.3.2.86
  16. A Survey on Farm Management and Occurrence Area of Herbicide Resistant Paddy Weeds in Chungbuk Province vol.2, pp.1, 2013, https://doi.org/10.5660/WTS.2013.2.1.001
  17. Cross-resistance of Echinochloa species to acetolactate synthase inhibitor herbicides vol.17, pp.2, 2017, https://doi.org/10.1111/wbm.12123