• Title/Summary/Keyword: 뼈대구조

Search Result 189, Processing Time 0.019 seconds

Advanced analysis and optimal design of space steel frames accounting for nonlinear behavior of connections (접합부의 비선형 거동을 고려한 공간 강뼈대 구조물의 고등해석과 최적설계)

  • Choi, Se Hyu
    • Journal of Korean Society of Steel Construction
    • /
    • v.16 no.5 s.72
    • /
    • pp.683-694
    • /
    • 2004
  • Advanced analysis and optimal design of semi-rigid space steel frames were presented. The advanced analysis can predict the combined nonlinear effects of connection, geometry, and material on the behavior and strength of semi-rigid frames. The Kishi-Chen power model was used to describe the nonlinear behavior of semi-rigid connections. Geometric nonlinearity was determined using stability functions. Material nonlinearity was determined using the Column Research Council (CRC) tangent modulus and the parabolic function. The direct search method proposed by Choi and Kim was used as optimization technique. One by one, the member with the largest unit value evaluated using the LRFD interaction equation were placed adjacent to a larger member selected from the database. The objective function was assumed to be the weight of steel frame, while the constraint functions were load-carrying capacities, deflections, inter-story drifts, and the ductility requirements. The member sizes determined using the proposed method were compared to those derived from the conventional LRFD method.

An Analysis of Cylindrical Tank of Elastic Foundation by Transfer Matrix and Stiffness Matrix (전달행렬과 강성행렬에 의한 탄성지반상의 원형탱크해석)

  • 남문희;하대환;이관희;장홍득
    • Computational Structural Engineering
    • /
    • v.10 no.1
    • /
    • pp.193-200
    • /
    • 1997
  • Even though there are many analysis methods of circular tanks on elastic foundation, the finite element method is widely used for that purpose. But the finite element method requires a number of memory spaces, computation time to solve large stiffness equations. In this study many the simplified methods(Analogy of Beam on Elastic Foundation, Foundation Stiffness Matrix, Finite Element Method and Transfer Matrix Method) are applied to analyze a circular tank on elastic foundation. By the given analysis methods, BEF analogy and foundation matrix method, the circular tank was transformed into the skeletonized frame structure. The frame structure was divided into several finite elements. The stiffness matrix of a finite element is related with the transfer matrix of the element. Thus, the transfer matrix of each finite element utilized the transfer matrix method to simplify the analysis of the tank. There were no significant difference in the results of two methods, the finite element method and the transfer matrix method. The transfer method applied to a circular tank on elastic foundation resulted in four simultaneous equations to solve completely.

  • PDF

An Optimality Criteria applied to the Design of Plane Frames (평면 뼈대 구조물의 설계에 적용된 최적규준)

  • 정영식;김봉익;김창규
    • Computational Structural Engineering
    • /
    • v.9 no.2
    • /
    • pp.121-131
    • /
    • 1996
  • This work proposes an optimality criteria applicable to the optimum design of plane frames subject to multiple behavioral constraints on member stresses and lateral displacements of nodes and also to side constraints on design variables. The method makes use of a first order approximation for both deflection and stress constraints instead of the zero order approximation based on the concept of FSD (fully stressed design). A redesign algorithm is derived from a mathematically rigorous method which uses the Newton-Raphson method to solve the system of nonlinear constraint equations and reduces the design space whenever minimum size restrictions become active. When applied to worked examples it proved more accurate and efficient, and it is often found that optimum designs are not fully stressed designs. This fact suggests that this rigorous method is worth what it claims for complicated computing and thus had better replace the crude stress ratio algorithm adopted by the majority of optimality criteria approaches. This is particularly true as long as we enjoy ever-increasing computing power at negligible costs.

  • PDF

Ultimate Strength Analysis of Space Steel Frames Considering Spread of Plasticity (점진적 소성화를 고려한 공간 강뼈대구조의 극한강도해석)

  • Kim, Sung Bo;Han, Jae Young;Park, Soon Cheol;Kim, Moon Young
    • Journal of Korean Society of Steel Construction
    • /
    • v.15 no.3
    • /
    • pp.299-311
    • /
    • 2003
  • This paper presents a finite element procedure to estimate the ultimate strength of space frames considering spread of plasticity. The improved displacement field is introduced based on the inclusion of second-order terms of finite rotations. All the non-linear terms due to bending moment, torsional moment, and axial force are precisely considered. The concept of plastic hinges is introduced and the incremental load/displacement method is applied for elasto-plastic analyses. The initial yield surface is defined based on the residual stress, and the full plastification surface is considered under the combined action of axial forces, bending and torsional moments. The elasto-plastic stiffness matrices are derived using the flow rule and the normality condition of the limit function. Finite element solutions for the ultimate strength of space frames are compared with available solutions and experimental results.

MPEG-U based Advanced User Interaction Interface System Using Hand Posture Recognition (손 자세 인식을 이용한 MPEG-U 기반 향상된 사용자 상호작용 인터페이스 시스템)

  • Han, Gukhee;Lee, Injae;Choi, Haechul
    • Journal of Broadcast Engineering
    • /
    • v.19 no.1
    • /
    • pp.83-95
    • /
    • 2014
  • Hand posture recognition is an important technique to enable a natural and familiar interface in HCI(human computer interaction) field. In this paper, we introduce a hand posture recognition method by using a depth camera. Moreover, the hand posture recognition method is incorporated with MPEG-U based advanced user interaction (AUI) interface system, which can provide a natural interface with a variety of devices. The proposed method initially detects positions and lengths of all fingers opened and then it recognizes hand posture from pose of one or two hands and the number of fingers folded when user takes a gesture representing a pattern of AUI data format specified in the MPEG-U part 2. The AUI interface system represents user's hand posture as compliant MPEG-U schema structure. Experimental results show performance of the hand posture recognition and it is verified that the AUI interface system is compatible with the MPEG-U standard.

Extension of BlueJ for Class Hierarchy Constriction based on the Formal Concept Analysis (FCA기반 클래스계층구조 설계를 위한 BlueJ의 확장)

  • Seo Jeong-Hyeok;Hwang Suk-Hyung;Yang Hae-Sool
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2004.11a
    • /
    • pp.275-278
    • /
    • 2004
  • 객체지향 프로그램에 있어 클래스계층구조는 프로그램의 뼈대가 된다. 따라서 이러한 클래스계층구조를 얼마나 잘 만드느냐에 따라 프로그램의 품질이 좌우된다. 그러나 좋은 품질의 클래스계층구조를 구축하는 작업은 객체지향 초보자에게는 쉬운 일이 아니다. 본 논문에서는 FCA(Formal Concept Analysis)기법을 이용하여 클래스계층구조 설계 도구를 BlueJ 의 확장기능으로 구현하였다. 본 연구결과는 객체지향 프로그래밍 초보자들이 클래스계층구조를 보다 수월하게 설계함으로써 좀 더 좋은 프로그램을 작성 할 수 있는 지원도구로서 제공될 수 있다.

  • PDF

Finite Element Analysis on the Stress and Deformation Behaviors of a Safety Helmet (안전헬멧의 응력 및 변형거동에 관한 유한요소해석)

  • Kim, Chung-Kyun
    • Journal of the Korean Institute of Gas
    • /
    • v.13 no.4
    • /
    • pp.27-32
    • /
    • 2009
  • This paper presents the stress and deformation behaviors using the finite element method as a function of the thickness of the helmets without the bead frames on the top of the shell structure. The helmet that would provide head and neck protections without causing discomfort to the user when it was worn for long periods of time should be manufactured for increasing the safety and impact energy absorption. The FEM computed results show that when the impulsive force is applied on the top surface of a helmet, the maximum stress and strain have been occurred around the position of an applied impact force, which may lead to the initial failure on the top surface of the helmet shell. As the helmet thickness is decreased from 4mm to 2mm, the impact energy absorbing rate is radically increased, and the maximum stress of the helmet is increased over the tensile strength, 54.3MPa of the thermoplastic material. Thus, the top surface of the helmet should be supported by a bead frame and increased thickness of the shell structure.

  • PDF

Design of Rigid Joints Using Strut-Tie Model (스터럿-타이 모델에 의한 강절점 영역설계에 관한 연구)

  • Won, Dae-Yon
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.18 no.1
    • /
    • pp.31-39
    • /
    • 2014
  • In order to design rigid zone area of frame structures, it is important to predict the direction change of internal stresses according to the bending moment acting on the joint region. In this study, it was examined whether current highway bridge design standards are useful to design different types of rigid joints having a various haunch shapes. In addition, stress distributions of inside of various rigid joints were inspected using the linear elastic finite element analysis. Based on the results of finite element analysis, the strut-tie models to design rigid joints are proposed. Suggested by this study, the strut-tie models have a same level of accuracy to a linear elastic finite element analysis. The proposed strut-tie models will be useful to design reinforcement details of rigid joints having a various haunch types.

Dynamic Analysis of Steel Jackets under Wave and Earthquake Loadings II : Pre/Post Processor and Numerical Analysis (파랑 및 지진하중을 받는 스틸자켓의 동적해석 II : 전/후처리 및 수치해석예)

  • 김문영;박기현;이상호;김동욱
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.5 no.5
    • /
    • pp.13-23
    • /
    • 2001
  • In the companion paper, F. E. formulation for the geometric and plastic non-linear analysis of steel jacket structures subjected to wave and earthquake loadings was presented and the main processor was developed. In this paper, the pre/post processor are developed in order to analyze the output results effectively as well as to prepare the input data efficiently. Furthermore, the numerical examples are presented and discussed for linear and non-linear analysis of steel jackets under environmental loadings.

  • PDF

Effects of Stiffness Characteristics of Super-Structure on Soil-Structure Interaction (지반(地盤)에 대한 구조물(構造物)의 상대강도(相對剛度)가 지반(地盤)-구조물(構造物) 상호작용(相互作用)에 미치는 영향(影響))

  • Park, Hyung Ghee;Joe, Yang Hee;Lee, Yong Il
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.5 no.1
    • /
    • pp.123-132
    • /
    • 1985
  • The flexibility of base material gives considerable influences on seismic responses of a structure. The effects of relative stiffness between super-structure and base material on dynamic soil-structure interaction are evaluated by parametric studies. Two 5-story buildings are used for the study; one is shearwall structure with relatively higher fundamental frequency and the other is frame structure with relatively lower fundamental frequency. The structures are modeled as beam-sticks coupled with springs and dashpots representing the base material. Dynamic equilibrium equations of the soil-structure interaction system are sloved by mode superposition method using Rosset modal damping values. Soil-structure interaction effect is found to be major concern in seismic analysis of shearwall structure in most cases while it seldom becomes engineering problem in frame-type structure. It is also found that seismic responses at lower elevation of the super-structure are amplified though they decrease at higher elevation as soil-structure interaction effects of the system increase.

  • PDF