최근 IoT 기술의 등장으로 저전력 소형 컴퓨터인 라즈베리파이 클러스터가 IoT 데이터 처리를 위해 사용되고 있다. IoT 기술이 발전하면서 다양한 데이터가 생성되고 있으며 IoT 환경에서도 빅데이터 처리가 요구되고 있다. 빅데이터 처리 프레임워크에는 일반적으로 하둡이 사용되고 있으며 이를 대체하는 솔루션으로 Apache Spark가 등장했다. 본 논문에서는 PC와 라즈베리파이 클러스터에서의 성능을 Apache Spark를 통해 비교하였다. 본 실험을 위해 Yelp 데이터를 사용하며 데이터 로드 시간과 Spark SQL을 이용한 데이터 처리 시간을 통해 성능을 비교하였다.
정보기술의 발달로 모든 데이터는 데이터베이스화 되어 빅데이터 시대를 맞이하였으며 방대한 양의 데이터에 대한 접근성과 활용 가능성을 높이고자 빅데이터 검색 플랫폼의 필요성이 증가되었다. 검색 플랫폼은 기본적으로 효율적인 검색을 위해 인덱스를 빠르게 생성하고 저장하는 인덱싱 (indexing) 과정과 생성된 인덱스를 활용하여 필요한 정보를 찾는 검색 (searching) 과정으로 구성된다. 빅데이터 시대를 지나 초빅데이터 시대를 맞이하여 데이터의 용량이 거대해짐에 따라 데이터 인덱싱 성능이 검색 플랫폼의 매우 중요한 성능문제로 대두되고 있다. 많은 기업들이 효율적인 빅데이터 검색을 위해 검색 플랫폼들을 도입하고 있으나, 검색 효율성 및 검색 정확도 관련 연구에 비해 검색 성능의 핵심이 되는 인덱싱(indexing)의 성능을 최적화하는 연구는 상대적으로 미흡한 실정이다. 또한 인덱싱(indexing) 기본 단위인 샤드(Shard) 수와 크기를 최적화하는 연구에 비해 검색 플랫폼을 클러스터 기반으로 운영하기 위한 다양한 성능 비교 관련 연구는 미흡하다. 이에 본 연구에서는 대표적인 엔터프라이즈 빅데이터 검색 플랫폼인 Elasticsearch 클러스터를 구성하여 확장성 높은 검색 환경을 위해 최적의 인덱싱 성능을 낼 수 있는 구성을 제안한다. 본 논문은 클러스터와 검색 플랫폼의 다양한 구성 변경을 통해 최고의 인덱싱 성능을 낼 수 있는 구성을 도출하여 최적 구성에서 기본 구성보다 평균 3.13배 높은 인덱싱 성능의 향상을 확인하였다
빅 데이터 처리는 파일이나 이미지, 동영상 등 다양한 형태의 데이터를 처리하여 문제를 해결하고 통찰력 있는 유용한 정보를 제공한다. 현재 빅 데이터 처리를 위해 다양한 플랫폼이 사용되지만, 하둡이 가지는 단순성, 생산성, 확장성, 그리고 내고장성 때문에 많은 기관, 기업에서 빅 데이터 처리에 하둡을 사용하고 있다. 또한, 하둡은 다양한 하드웨어 플랫폼으로 클러스터를 구축할 수 있으며, 네임 노드(Master)와 데이터 노드(Slave)로 구분하여 빅 데이터를 처리한다. 본 논문에서는 실제 기관과 기업에서 사용하는 완전분산모드를 사용하였으며 원활한 테스트를 위해 저전력이고 저가인 싱글 보드를 사용하여 하둡 클러스터를 구축하였다. 네임 노드의 성능 영향 분석은 싱글 보드와 랩톱을 네임 노드로 사용하여 같은 데이터 처리를 통하여 비교하였으며 데이터 노드의 개수에 따른 영향 분석은 싱글 보드를 기존 클러스터의 개수에서 2배까지 늘려가며 데이터 노드가 미치는 영향을 분석하였다.
준해상사고를 줄이기 위하여 준해양사고 등을 분석하여 사고 예방에 활용하였다. 하지만 준해양사고 건수가 많은 대신 주내용이 정성적이기 때문에 다양한 정량적 데이터로 분석하기에는 현실적 어려움이 있었다. 이러 장단점을 고려하여 준해양사고에 대해서 그동안 단순한 내용 검토 방식에서 통계적 분석과 이를 통한 객관적 결과 토출이 가능한 빅데이터 기법를 적용한 연구가 필요하다. 이를 위해 10,000여건의 준해양사고 보고서를 전처리 작업을 통해 통일된 양식으로 정리하였다. 이 데이터를 기반으로 1차로 텍스트마이닝 분석을 통해 정박 중 준해양사고 발생 원인에 대한 주요 키워드를 도출하였다. 주요 키워드에 대해 2차로 시계열 및 클러스터 분석을 통해 발생할 수 있는 준해양 사고 상황에 대한 경향 예측을 도출하였다. 이번 연구에서는 정성적 자료인 준해양사고 보고서를 빅데이터 기법을 활용하여 정량화된 데이터로 전환할 수 있고 이를 통해 통계적 분석이 가능함을 확인하였다. 또한 빅데이터 기법을 통해 차 후 발생할 수 있는 준해양사고 객관적인 경향을 파악함으로써 예방 대책에 대한 정보 제공이 가능함을 확인할 수 있었다.
최근 관심이 증대되고 있는 빅데이터 분석 및 처리를 위한 병렬분산처리 시스템은 대용량 서버가 필요하고 인프라 구축을 위해 고비용을 지불해야 한다. 이를 해결하기 위해 본 연구에서는 저렴한 라즈베리 파이로 클러스터를 구성하고, 하둡보다 빠른 속도의 처리를 제공하는 아파치 스파크를 분석 솔루션으로 하는 빅데이터 분석 플랫폼을 구축하였다. 구축한 플랫폼이 빅데이터 활용을 위해 적절한 성능을 보이는지 확인하기 위해 텍스트 마이닝을 수행하였고, 분석 결과 유효한 성능을 보였다. 적절한 비용으로 빅데이터 분석이 가능해지면서 중소기업과 개인, 교육 기관에서도 빅데이터 활용이 가능해지면서 활용 분야가 크게 확대될 것으로 보인다.
성장하는 빅 데이터 시장과 빅 데이터 수의 기하급수적인 증가는 기존 컴퓨팅 환경에서 데이터 처리의 어려움을 야기한다. 특히 이미지 데이터 처리 속도는 데이터양이 많을수록 현저하게 느려진다. 이에 본 논문에서는 Apache Spark와 OpenCV를 활용한 분산 클러스터 컴퓨팅 환경의 대용량 이미지 머신러닝 시스템을 제안한다. 제안하는 시스템은 Apache Spark를 통해 분산 클러스터를 구성하며, OpenCV의 이미지 처리 알고리즘과 Spark MLlib의 머신러닝 알고리즘을 활용하여 작업을 수행한다. 제안하는 시스템을 통해 본 논문은 대용량 이미지 데이터 처리 및 머신러닝 작업 속도 향상 방법을 제시한다.
IoT의 발달로 인해 새롭게 빅데이터와 그의 실시간 처리의 중요성이 증대되고 있다. 본 논문에서는 사물인터넷의 관제 및 데이터 처리 기능을 갖춘 SmartX-mini 센터를 통하여 NUC 클러스터의 빅데이터 처리 가능성을 제시하고, 이를 검증하기 위하여 SmartX-mini 테스트베드를 활용한다. SmartX-mini Center의 Spark 프레임워크를 이용한 실험을 통해 IoT 환경에서의 NUC 클러스터의 빅데이터 처리 가능에 대한 가능성을 검증하였다.
본 논문에서는 하둡 플랫폼에서 비용 효율적 빅데이터 분석을 수행하기 위한 클러스터 규모의 설정 방안을 연구한다. 의료기관의 경우 진료기록의 병원 외부 저장이 가능해짐에 따라 클라우드 기반 빅데이터 분석 요구가 증가하고 있다. 본 논문에서는 대중적으로 많이 사용되고 있는 클라우드 서비스인 아마존 EMR 프레임워크를 분석하고, 비용 효율적으로 하둡을 운용하기 위해 클러스터의 규모를 산정하기 위한 모델을 제시한다. 그리고, 다양한 조건에서의 실험을 통해 맵리듀스의 실행에 영향을 미치는 요인을 분석한다. 이를 통해 비용 대비 처리시간이 가장 효율적인 클러스터를 설정함으로써 빅데이터 분석시 효율성을 증대시킬 수 있다.
하둡 분산 파일시스템(HDFS)는 빅데이터의 병렬 분산 처리를 위해 다수의 노드에 데이터를 중복 저장하는 파일시스템이다. HDFS의 분산 노드 클러스터는 수천 개 이상의 규모 확장성을 갖추고 있으나 빅데이터 처리를 위한 전용 하드웨어를 가정하고 있으며, 기존의 기업 및 병원에서 사용하고 있는 다양한 유휴 전산 자원을 고려하지는 못하는 문제가 있다. 본 논문에서는 기관 내 존재하는 다양한 유휴 전산 자원을 필요에 따라 동적으로 HDFS에 추가함으로써 빅데이터 저장 및 분석 성능을 향상시킬 수 있는 동적 클러스터 관리 기법을 제시한다.
최근 초연결화를 근간으로 한 스마트 홈 구성을 위해 스마트 홈 내부에 센서를 탑재한 디바이스가 증가하고 있으며, 이를 효과적으로 사용하기 위해 빅데이터 처리 시스템이 활발하게 도입되고 있다. 그러나 기존 빅데이터 처리 시스템은 분산노드에 할당되기 전 모든 요청이 클러스터 드라이버로 향하기 때문에 동시에 많은 요청이 발생하는 경우 분할 작업을 관리하는 클러스터 드라이버에 병목현상이 발생함에 따라 네트워크를 공유하는 클러스터 전체의 성능감소로 이어진다. 특히 작은 데이터 처리를 지속적으로 요청하는 스마트 홈 디바이스에서 지연율이 더 크게 나타난다. 이에 본 논문에서는 동시간에 빈번한 요청이 발생하는 스마트 홈 환경에서 효과적인 데이터 처리를 위한 기계학습 기반 캐싱 시스템을 설계하였다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.