• Title/Summary/Keyword: 비행 속도

Search Result 472, Processing Time 0.04 seconds

Papers : A Study on the Development and Performance of Hypervelocity Launcher (논문 : 초고속 발사장치의 개발 및 성능에 관한 연구)

  • Choe, Byeong-Cheol;Heo, Cheol-Jun;Tak, Jeong-Su;Bae, Gi-Jun;Byeon, Yeong-Hwan;Lee, Jae-U;Jang, Jo-Won
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.30 no.3
    • /
    • pp.96-104
    • /
    • 2002
  • 탄체가속기용 초기 발사장치로 사용 가능한 건국대 초고속 발사장치가 개발되었다. 이는 2단계 기포 (gas gun) 형태의 발사장치로 공기를 작동 기체로 사용하여 무게 22g의 탄체를 750m/sec로 가속할 수 있 는 성능을 보인다. 초고속 발사장치의 성능 특성을 알아보기 위하여, 구동부의 압축 특성과 작동 특성에 대한 성능 실험을 수행하였으며 실험으로부터 피스톤에 의한 압축 이득과 1,2차 구동부간에 발사장치의 성능을 최상으로 유지할 수 있는 값들이 존재함을 확인하였다. 초고속 비행체의 공력 특성 및 주위의 유동 해석에 응용 가능한 고속 탄환체에 대한 흐름의 가시화를 수행하여 수치적 계산 결과와 비교하였으며, 향후 고속유동의 물리적 현상 해석에 이용될 수 있음을 확인하였다.

The Development of High Precision Laser Finder Ranger (고정밀 레이저 거리 계측기 개발에 관한 연구)

  • Bae, Young-Chul;Kim, Yi-Gon;Park, Jong-Bae;Kim, Chun-Suk;Cho, Eui-Joo;Seo, Jonh-Joo;Azimov, U.B.;Koo, Young-Duk
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.10 no.12
    • /
    • pp.2296-2302
    • /
    • 2006
  • In this paper, we propose a development technique of high precision laser finder ranger within instrument distance 1km, instrument error less than 1 m by using pulse time of flight method in the 5m unit instrument and heterodyne method in the within Am unit. These propose methods can be more advanced to measurement velocity and more highly precision distance instrument not affected the strength of light. We also validate this usefulness.

Generation of an Optimal Trajectory for Rotorcraft Subject to Multiple Waypoint Constraints (다중 경로점 제한 조건하의 헬리콥터의 최적 경로 생성)

  • Choe,Gi-Yeong
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.31 no.8
    • /
    • pp.50-57
    • /
    • 2003
  • Controlling rotorcraft to fly precisely through multiple, irregularly, and closely spaced waypoints is a common and practical mission. However, finding an optimal trajectory for this kind of mission is quite challenging. Usability of traditional approaches such as inverse control or direct methods to this kind of problem is limited because of either limitation on the specification of the constraints or requirement of extensive computation time. This paper proposes a method that can easily compute the full trajectory and control history for rotorcraft to pass through waypoints while satisfying other general constraints of states such as velocities and attitudes on each waypoint. The proposed method is applied to rotorcraft guidance problems of slalom and linear trajectory in the middle of general curved trajectory. The algorithm is test for various situations and demonstrates its usability.

Airspeed Calibration of a Light Airplane via Flight Test (비행시험을 통한 경비행기의 속도계 보정)

  • Lee, Jung-Hoon;Yoo, Si-Yoong;Lee, Jang-Ho
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.14 no.7
    • /
    • pp.629-634
    • /
    • 2008
  • This paper presents the flight test procedure and the results for the airspeed indicator calibration of a light airplane the name of ChangGong-91, which is the first type certified aircraft from Korean Ministry of Construction and Transportation, as a part of the flight test validation to get the certification. The flight tests for airspeed position error calibrations are conducted using tower fly by method in order to calibrate swivel head testboom which is attached to the right wing tip of the airplane. Also system to system method is applied in order to calibrate the airspeed indicator of the cockpit. The flight test is conducted at the basis of the 'Korean Airworthiness Standard' which is the regulation of Korean Ministry of Construction and Transportation. The airspeed error range for the testboom and the airspeed indicator are determined to $-0.75{\sim}+0.75$ knot and to $-4.0{\sim}+2.0$ knots, respectively. The calibration results are applied to ChangGong-91 Flight Operation Manual.

A Numerical Study On Thermal Characteristics of HALE UAV Solar Arrays (HALE 무인기의 태양전지 열특성에 관한 해석적 연구)

  • Song, Ji-Han;Nam, Yoonkwang
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.21 no.5
    • /
    • pp.29-36
    • /
    • 2017
  • In this study, a numerical analysis is made of the fluid flow and heat transfer characteristics in the solar arrays of HALE (High Altitude Lond Endurance) UAV. In the stratosphere where UAV operates, high level solar radiation is induced, heat transfer decreases due to natural convection and forced convection is dominated by ambient flow. In order to predict the solar array temperature range in this environment condition, the conjugate heat transfer analysis was carried out for the solar arrays on the main wing. The investigation focused on the temperature distribution of solar array and heat transfer characteristics according to influence of solar energy, flight condition as vehicle speed, air density, temperature.

A Reference Trajectory Generation Method with Piecewise Constant Acceleration Condition for the Curved Flight of a Drone (드론의 곡선 비행을 위한 구간별 등가속 조건의 기준 궤적 생성 방법)

  • Jang, Jong Tai;Gong, Hyeon Cheol;Lyou, Joon
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.22 no.3
    • /
    • pp.233-240
    • /
    • 2016
  • This paper describes a three-dimensional reference trajectory generation method for giving commands to an unmanned air vehicle (UAV). The trajectory is a set of consecutive curves with constant acceleration during each interval and passing through via-points at specified times or speeds. The functional inputs are three-dimensional positions and times (or speeds) at via-points, and velocities at both boundaries. Its output is the time series of position values satisfying the piecewise constant acceleration condition. To be specific, the shape of the trajectory, known as the path, is first represented by splines using third degree polynomials. A numeric algorithm is then suggested, which can overcome the demerits of cubic spline method and promptly generate a piecewise constant acceleration trajectory from the given path. To show the effectiveness of the present scheme, trajectory generation cases were treated, and their speed calculation errors were evaluated.

A study on the role and application technology of the space explorer (우주 탐사선에서 파일 시스템의 역할 및 응용 기술 연구)

  • Koo, Cheol-Hea;Ju, Gwang-Hyeok
    • Aerospace Engineering and Technology
    • /
    • v.12 no.2
    • /
    • pp.91-98
    • /
    • 2013
  • Computing environment of space explorer including LEO (Low Earth Orbit), GEO (Geosynchronous Earth Orbit) satellite may be considered as the same category of embedded system on the ground. But with comparison with personal computing environment it is widely accepted that the space computing is outdated and behind of state of the art. Especially file system which is nearly essential item in all ground computing environment including personal computer, workstation and server is rarely used in space explorer till lately. In this paper, a study of ESA PUS (Packet Utilization Standard) and CCSDS (Consultative Committee for Space Data Systems) community's activity, international trend, and applicable technical application for applying file system in oder to use these standards for utilizing the file system to deep space explorer is described.

Fabrication and Performance Analysis of Environment Friendly Double Core Bullets for Small Arms (2중 코어 구조의 소화기용 친환경 탄자 제조 및 특성 분석)

  • Hong, Jun-Hee;Jang, Tak-Soon;Song, Chang-Bin;Kang, Dae-Wha
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.14 no.3
    • /
    • pp.345-352
    • /
    • 2011
  • This paper focuses on the properties analysis of 9mm bullet dual structure core to substitute current lead core by environment-friendly combination of W-Cu-Ni system high density composite materials. So the four combination samples were made of dual core with the different center of gravity location backward or forward compare to that of lead type bullet, and we experimented about the performance of 9mm bullet dual structure core. In the experimental results, the outer shape of core of four environment friendly samples on the target maintain marginally, while the current lead core bullets are completely crushed after hitting the target. The penetration depth of environment friendly samples excel seven times to lead type bullet and the three out of four samples with forward adjusted center of gravity penetrate deep as twice as ones backward. The impact tolerance of all four samples satisfies military specification, however, more firing tests are required to improve reliability of scattering distribution.

Types and Threat of Ballistic Missile (탄도미사일의 종류와 위협)

  • Kim, Young-deuk;Moon, Suk-hyun;Park, Tae-yong
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2015.10a
    • /
    • pp.439-441
    • /
    • 2015
  • The ballistic missile is very threatening weapon system because it is difficult to detect and intercept due to fast speed. Recently, many countries worry about North Korea's ballistic missile launching tests especially the success of launching Kwangmyongsong-3 satellite by Eunha-3 long range rocket at 2012. This event means announcement of North Korea have capability to develop ICBM(Intercontinental Ballistic Missile) to all over the world. In this paper, it is surveyed and described that history, types and threat of ballistic missiles.

  • PDF

Performance Test and Evaluation of ACM for Fighter's External POD (전투기 외장 포드용 ACM의 성능 시험평가)

  • Paek, Seung-Yun;Seo, Ja-Won;Song, Deok-Hee;Kim, Kyeong-Su;Hong, Jae-Pyo;Park, Sung-Soon
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2010.11a
    • /
    • pp.527-530
    • /
    • 2010
  • A performance test of an air cycle machine with an air to air heat exchanger was performed. The air cycle machine designed for avionics cooling in a fighter's external pod is a small turbo machine operated on the reverse Brayton air cycle driven by captured ram air which is the source of driving energy and it can be used as cooling fluid going through electronics in the pod during the flight. The air to air heat exchanger was also used to avoid moisture for avionics. The performance test have verified that the developed ACM and heat exchanger meet the design requirements.

  • PDF