• Title/Summary/Keyword: 비행환경

Search Result 711, Processing Time 0.026 seconds

Design and Experiment of Lab-scale Contrail Generator (Lab-scale 비행운 발생장치 설계 및 시험)

  • Choi, Jaewon;Ock, Gwonwoo;Kim, Sangki;Kim, Hyemin
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.23 no.4
    • /
    • pp.35-41
    • /
    • 2019
  • Contrail is a kind of cloud that is formed during the flight by vapor condensation of engine exhaust in a cold atmospheric condition. Owing to the negative effects of contrails on the environment and in military applications, several studies for contrail mitigation had been performed in developed countries. The goal of this research is to design a lab-scale contrail generator, and to validate the contrail mitigation technology suggested by previous studies. The contrail generator was made using superheated vapor and a low temperature wind tunnel. Using this generator, the ineffectiveness of ethanol and surfactant suggested in the previous paper on contrail mitigation was found experimentally.

Development of Simulation Environment for Proximity Flight Using Simulink and X-Plane (Simulink와 X-Plane을 이용한 모의 근접비행 시뮬레이션 환경 개발연구)

  • Lee, Sanghoon;Park, Chanhwi;Park, Younghoo;Lee, Daewoo
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.49 no.6
    • /
    • pp.465-472
    • /
    • 2021
  • Prior to the actual flight test of the separation-reintegration situation of fixed-wing mother and child UAVs in the air, it is necessary to verify the flight control system of child UAV through simulations. In this paper, we build a simulation environment for the development of a child UAV flight control system in a lab environment based on the wake turbulence of X-Plane. To this end, the aerodynamics analysis of child UAV was performed, and Simulink was used to simulate aircraft, and X-Plane was utilized to implement visualization, wind, gusts, and mother UAV movements. The simulation environment built by performing simulated proximity flights was verified by applying the guidance and control algorithm to the child UAV model within Simulink. Furthermore, the flight results confirm the area in which the child UAV can safely fly from the rear of the mother UAV.

편대비행 위성의 자세 동기화를 위한 SDRE 추적 제어기와 Hardware-In-the-Loop 시뮬레이션

  • Jeong, Jun-O;Park, Sang-Yeong
    • Bulletin of the Korean Space Science Society
    • /
    • 2010.04a
    • /
    • pp.31.2-31.2
    • /
    • 2010
  • 편대비행 위성이 공동의 임무를 수행하기 위해서는 편대를 이루는 위성의 각기 다른 초기 오차와 다양한 외란 환경에서도 자세 동기화를 이룰 수 있는 기법이 필요하다. 이 연구에서는 편대비행위성의 자세 동기화를 위하여 비선형 시스템에 대한 준최적 제어기법인 SDRE(State-Dependent Riccati Equation)에 기반한 추적 제어기가 사용되었다. 반작용 휠이 포함된 위성의 자세 동역학이 SDRE 추적 제어기를 구성하는데 이용된다. 이를 Leader/Follower 편대비행 시스템에 적용하며, 기준 자세를 추적하는 Leader 위성의 자세를 Follower 위성이 추적하여 자세 동기화를 이룰 수 있다. MATLAB과 SIMULINK를 이용한 수치해석적 시뮬레이션으로 추적 제어기의 성능을 검증하였으며, 이에 대한 실시간 HIL(Hardware-In-the-Loop) 시뮬레이션이 수행되었다. 무중력 환경을 모사하는 에어베어링시스템과 세 개의 반작용 휠을 장착한 자세제어 HILS(Hardware-In-the-Loop Simulator)는 PC104 타입의 임베디드 컴퓨터에서 SIMULINK의 xPC Target을 이용한 실시간 시뮬레이션 환경을 제공하며, 이에 적용되는 SDRE 추적 제어기는 이산화되어 설계되었다. 또한 SDRE 추적 제어기에 대한 안정성을 보장하는 영역이 추정되어 위 추적 제어기가 위성 편대비행에 적합한 자세 동기화 기법임을 보였다.

  • PDF

Development of 3D Joystick for Flight Simulator using Gyro Sensor (자이로 센서를 활용한 비행 시뮬레이터용 3D 조이스틱 개발)

  • Cha-Hun Park;Sung-Ho Lee;Myeong-Chul Park
    • Proceedings of the Korean Society of Computer Information Conference
    • /
    • 2023.01a
    • /
    • pp.333-334
    • /
    • 2023
  • 비행시뮬레이터는 ICT 및 SW 응용분야에 속하는 기술로 항공기의 환경을 재현하는 시뮬레이션 환경을 제공한다. 시뮬레이터의 조종 장치인 일반적인 조이스틱을 대체한 기존 VR장비의 컨트롤러는 허공에 들고 조종하므로 정확하고 정교한 실제 항공기 조종에 사용하기에는 많은 문제점이 있다. 본 연구에서는 비행시뮬레이터와 VR분야에서 사용될 수 있는 가속도 센서와 진동 센서를 적용한 3D 조이스틱을 제안한다. 이를 위하여 3축 센싱과 정보를 표시하는 디스플레이 및 와이파이 통신을 위한 보드를 설계하고 유니티 기반의 가상 환경을 구현하여 적용 가능성을 확인하였다. 정상적으로 통신 인터페이스를 통하여 조종 장치가 동작하였고 게임 및 구현된 보드에서 확인한 센싱값이 일치함을 확인하였다. 연구의 결과물은 비행시뮬레이터 외에도 VR 및 다양한 메타버스 관련 콘텐츠에 사용될 수 있을 것으로 판단한다.

  • PDF

A Design of Helicopter Control Law Rapid Prototyping Process Using HETLAS (HETLAS를 활용한 헬리콥터 비행제어 법칙 Rapid Prototyping 프로세스 설계)

  • Yang, Chang Deok;Jung, Ho-Che;Kim, Chang-Joo;Kim, Chong-Sup;Kim, Cheol-Ho
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.43 no.8
    • /
    • pp.731-738
    • /
    • 2015
  • The rapid prototyping process and development tool which enable the control law evaluation efficiently are needed to minimize the development cycle, cost and risk of aircraft flight control system. This paper describes a development process that integrates the designed control law into HETLAS to evaluate simulation effectively using nonlinear mathematical models. The desktop engineering simulator was developed using HETLAS for the piloted simulation evaluation of a various control modes and the procedure was developed, which quickly integrates the HETLAS into HQS(Handling Quality Simulator) and HILS(Hardware In the Loop Simulation) environments. This paper presents a rapid prototyping process using HETLAS that significantly shortens the integration process of the control law into the nonlinear math model, HETLAS, and allows the control law designs to be quickly tested in the piloted simulation and HILS environments.

Real-Time Flight Testing for Developing an Autonomous Indoor Navigation System for a Multi-Rotor Flying Vehicle (실내 자율비행 멀티로터 비행체를 위한 실시간 비행시험 연구)

  • Kim, Hyeon;Lee, Deok Jin
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.40 no.4
    • /
    • pp.343-352
    • /
    • 2016
  • A multi-rotor vehicle is an unmanned vehicle consisting of multiple rotors. A multi-rotor vehicle can be categorized as tri-, quad-, hexa-, and octo-rotor depending on the number of the rotors. Multi-rotor vehicles have many advantages due to their agile flight capabilities such as the ability for vertical take-off, landing and hovering. Thus, they can be widely used for various applications including surveillance and monitoring in urban areas. Since multi-rotors are subject to uncertain environments and disturbances, it is required to implement robust attitude stabilization and flight control techniques to compensate for this uncertainty. In this research, an advanced nonlinear control algorithm, i.e. sliding mode control, was implemented. Flight experiments were carried out using an onboard flight control computer and various real-time autonomous attitude adjustments. The feasibility and robustness for flying in uncertain environments were also verified through real-time tests based on disturbances to the multi-rotor vehicle.

Test and Evaluation of Onboard Equipments for Guided Missile via Captive Flight Test (탑재비행시험을 이용한 유도무기 탑재장비의 시험평가)

  • Lee, Sung-Mhan;Oh, Hyun-Shik;Sung, Duck-Yong;Lee, Su-Chang
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.35 no.1
    • /
    • pp.73-78
    • /
    • 2007
  • The process and results of Captive Flight Test(CFT), conducted by Agency for Defense Development(ADD) using the Korean KTX-1 trainer and external fuel tank, are presented. Through over 150 sorties of CFT, the guided weapon system's critical subsystems like Seeker, Navigation Device and Technology, Inertial Sensor, and Radio Altimeter are tested and evaluated. Using the CFT, time and cost are saved in weapon system research and development procedure.

Development of Radar HILS System and Verification Radar Performance Scenario-based (레이다 비행 모의 장치 개발 및 시험 시나리오 기반 레이다 성능 검증)

  • Yong-kil Kwak
    • Journal of Advanced Navigation Technology
    • /
    • v.27 no.5
    • /
    • pp.574-579
    • /
    • 2023
  • The radar flight test has many restrictions on simulating various targets, clutter and jamming signal. Therefore, in this study, a radar HILS system that performs a radar operation simulation function according to an operation scenario was developed. Radar HILS simulates the radar mission environment through radar beam operation simulation, radar operation control, simulated signal generation, and flight attitude simulation.. HILS generates and modulates simulated target signals(single, multiple targets) containing radar mission environments(clutter, jamming etc.) based on flight scenarios, and transmits them to AESA radar over RF. And Scenario-based radar performance was verified by detecting simulated targets and confirming detection results.

S/W Development of Flying Qualities Evaluation in Virtual Flight Test using MATLAB GUI (GUI 기반 가상모의시험 비행성 평가 S/W 개발)

  • Cho, Seung-Gyu;Rhee, Ihn-Seok;Kim, Byoung-Soo
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.41 no.1
    • /
    • pp.61-69
    • /
    • 2013
  • In an evaluation process of aircraft flying qualities, a clear and concise application interface is important since an evaluation process requires numerous repeated evaluation. This flight evaluation program have implemented efficient flight evaluation user interface along with changed trim condition interface and composed of comprehensive evaluation interface have mounted all automated FQ evaluation modules that was selected to be compose of 14 items in respect of an unmanned fixed-wing aircraft. Accordingly when it is necessary to design the flight control system as well as to develop a FQ considered aircraft, this S/W can be utilized as a tool that is a useful test evaluation S/W with scalability and enable to reduce the time and the cost of verification and evaluation process.

A Study on Thermal Characteristics of Stratospheric Airship Influenced by Solar Radiation (태양복사에너지에 의한 성층권 비행선의 열특성에 관한 연구)

  • Kim Min-Jung;Lee Dae-Won;Roh Tae-Seong;Choi Dong-Whan
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.9 no.2
    • /
    • pp.89-96
    • /
    • 2005
  • This study has been performed on the mechanism of heat transfer between stratospheric airship and its surroundings while the airship is staying in the air at the altitude of 20km. The computational grid of airship has been generated and the results influenced by the number and the shape of grids have been compared. The temperature distributions have been obtained through this thermal analysis considering three modes of heat transfer - conduction, convection and radiation - in stratospheric conditions. Based on the airship's surface and inner temperature variations, the influence of temperature distributions on the helium envelope and the payload has been predicted.