DOI QR코드

DOI QR Code

Design and Experiment of Lab-scale Contrail Generator

Lab-scale 비행운 발생장치 설계 및 시험

  • Choi, Jaewon (Department of Aeronautical & Mechanical Design Engineering, Korean National University of Transportation) ;
  • Ock, Gwonwoo (Department of Aeronautical & Mechanical Design Engineering, Korean National University of Transportation) ;
  • Kim, Sangki (Department of Aeronautical & Mechanical Design Engineering, Korean National University of Transportation) ;
  • Kim, Hyemin (Department of Aeronautical & Mechanical Design Engineering, Korean National University of Transportation)
  • Received : 2019.03.05
  • Accepted : 2019.04.04
  • Published : 2019.08.01

Abstract

Contrail is a kind of cloud that is formed during the flight by vapor condensation of engine exhaust in a cold atmospheric condition. Owing to the negative effects of contrails on the environment and in military applications, several studies for contrail mitigation had been performed in developed countries. The goal of this research is to design a lab-scale contrail generator, and to validate the contrail mitigation technology suggested by previous studies. The contrail generator was made using superheated vapor and a low temperature wind tunnel. Using this generator, the ineffectiveness of ethanol and surfactant suggested in the previous paper on contrail mitigation was found experimentally.

비행운은 차가운 대기환경에서 항공기가 운항할 때 엔진 배기의 수증기가 응축하여 발생하는 구름을 뜻한다. 비행운은 환경적, 군사적으로 악영향을 끼치는 요소로 지목되고 있으며, 이에 따라 비행운을 저감시키기 위한 다양한 연구가 선진국에서 진행되었다. 본 연구에서는 비행시험 없이 지상에서 진행할 수 있는 Lab-scale 비행운 발생 장치를 설계하고, 이를 활용하여 기존 연구에서 제시된 비행운 저감 기법을 실험적으로 검증하는 데 그 목적이 있다. 연구를 통해 과열증기와 저온풍동을 사용하는 비행운 발생 장치를 제작하였으며, 이를 통해 기존 문헌에 제시된 에탄올 및 유화제가 비행운 저감에 효과가 없음을 실험적으로 확인하였다.

Keywords

References

  1. Noppel, F., "Contrail And Cirrus Cloud Avoidance Technology," Ph.D. Dissertation, Department of Power and Propulsion, Cranfield University, Cranfield, Bedfordshire, U.K., 2007.
  2. Noppel, F. and Singh, R., “Overview on Contrail and Cirrus Cloud Avoidance Technology,” Journal of Aircraft, Vol. 44, No. 5, pp. 1721-1726, 2007. https://doi.org/10.2514/1.28655
  3. Schumann, U., “On Condition for Contrail Formation from Aircraft Exhausts,” Meteorologische Zeitschrift, Vol. 5, No. 1, pp. 4-23, 1996. https://doi.org/10.1127/metz/5/1996/4
  4. Choi, J.W. and Kim, H.M., “A Trend for the Contrail Reduction Technology,” Journal of Aerospace System Engineering, Vol. 12, No. 2, pp. 23-29, 2018. https://doi.org/10.20910/JASE.2018.12.2.23
  5. Fichter, C., Marquart, S., Sausen, R. and Lee, D.S., “The Impact of Cruise Altitude on Contrails and Related Radiative Forcing,” Meteorologische Zeitschrift, Vol. 14, No. 4, pp. 563-572, 2005. https://doi.org/10.1127/0941-2948/2005/0048
  6. Mannstein, H., Gierens, K. and Spichtinger, P., "How to Avoid Contrail Cirrus", 1st CEAS European Air and Space Conference, Berlin, Germany, pp. 2217-2220, Sep. 2007.
  7. Haglind, F., “Potential of lowering the contrail formation of aircraft exhausts by engine re-design,” Journal of Aerospace Science and Technology, Vol. 12, No. 6, pp. 490-497, 2008. https://doi.org/10.1016/j.ast.2007.12.001
  8. Strom, L. and Gierens, K., "First Simulation of Cryoplane Contrails," Journal of Geophysical Research, Vol. 107, No. D18, pp. AAC2-1-AAC 2-13, 2002.
  9. Konig-Lumer, I., Schwenk, U., Salvador, R. and Kapfinger, J., "Agent for De-Icing and Protecting Against Icing-Up," US4358389-A, 9 Nov. 1982.
  10. Singh, S., "Method of Suppressing Formation of Contrails and Solution Therefor", US5005355A, 9 Apr. 1991.
  11. Anderson, C.E., Birstein, S.J. and Silverman, B.A., "Method and apparatus for suppressing contrails," US3517505A, 30 Jun. 1970.