• Title/Summary/Keyword: 비행제어기법

Search Result 183, Processing Time 0.023 seconds

Failure Rate Analysis of UAV Flight Control System (무인항공기용 비행제어 시스템의 고장율 분석)

  • Kim, Sung-Su;Oh, Tae-In;Choi, Kee-Young;Park, Choon-Bae;Ha, Cheol-Keun
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.35 no.6
    • /
    • pp.517-525
    • /
    • 2007
  • As usage of UAV becomes more common, a basic requirements on the system are changing. Existent system did function embodiment by major object, but current UAV puts bigger weight to availability. Therefore, all the advanced countries in UAV technologies put great efforts in reliability analysis techniques and source collection of system, and reflect the result in design. The authors are developing a flight control system for a UAV and using the reliability analysis techniques in the process. This paper introduces basic reliability analysis techniques and results of analysis for a small UAV flight control system that is developing present. The result plans efficiency enlargement UAV development and operation process.

A Study On Missile Flight Simulation Method Using the Built-in Memory of Aviation Control Unit (비행제어장치 내장 메모리를 활용한 유도탄 모의비행기법 연구)

  • Kim, Tae-Hoon;Lee, Sang-Hoon;Gong, Min-Sik
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.22 no.4
    • /
    • pp.536-544
    • /
    • 2019
  • During the assembly and function inspection of missile system, flight simulation process is required. In the conventional flight simulation check of missiles, an inertial navigation system simulator was used to transmit the navigation output data acquired in HILS. There are several disadvantages in terms of check configuration complexity and data synchronization when using the simulator. So we proposed a new flight simulation method that utilizes the nonvolatile built-in memory of the aviation control unit. The data processing procedure and operation procedure of the proposed method for type I and type II missiles are presented. And we analyzed the causes of the difference between proposed method result and the HILS result for type II missile. By comparing the results obtained by the experiments using the proposed method with the results of HILS, the validity of proposed method was confirmed.

Control Performance Improvement Using Overshoot Detecting Logic and Feedforward Disturbance Observer (오버슈트 탐지 로직 및 피드포워드 외란관측기를 활용한 제어 성능 개선 연구)

  • Lee, Hanbit;Lim, Seunghan
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.48 no.6
    • /
    • pp.431-441
    • /
    • 2020
  • In this paper, we propose a new method using a feedforward disturbance observer that guarantees stability and robustness about the effects of external disturbance and model uncertainty. The method is consist of a disturbance observer, a feedforward controller, and an overshoot detecting logic. It has an advantage of reducing the excessive overshoot by external disturbance and model uncertainty. Also, it is easy to adjust the control gain due to a simple structure. In order to verify the effectiveness of a new method, simulation results are given for longitudinal model of F-16 aircraft. By reflecting a various of model uncertainties, the stability and the robustness are guaranteed. Finally, the stability and the robustness of the proposed method are verified using root locus plot and bode plot.

Helicopter Active Airframe Vibration Control Simulations Using an Exhaustive Test Method (Exhaustive 시험 기법을 이용한 헬리콥터 능동 기체 진동 제어 시뮬레이션)

  • Park, Byeong-Hyeon;Lee, Ye-Lin;Park, Jae-Sang
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.50 no.11
    • /
    • pp.791-800
    • /
    • 2022
  • The number and locations of force generators and their force directions of Active Vibration Control System(AVCS) are important to maximize the airframe vibration reduction performance of helicopters. The present AVCS simulation using an exhaustive test method attempts to determine the best number and locations of force generators and their force directions for maximization of the airframe vibration reduction performance of UH-60A helicopter at 158 knots. The 4P hub vibratory loads of the UH-60A helicopter are calculated using DYMORE II, a nonlinear multibody dynamics analysis code, and MSC.NASTRAN is used to predict the vibration responses of the UH-60A airframe. The AVCS framework with an exhaustive test method is constructed using MATLAB Simulink. As a result, when applying AVCS with the optimal combination of the force generators, the 4P airframe vibration responses of UH-60A helicopter are reduced by from 19.35% to 98.07% compared to the baseline results without AVCS.

TSK Type Fuzzy Controller Design for Altitude Control of an Unmanned Helicopter (무인헬리콥터의 고도제어를 위한 TSK형 퍼지제어기 설계)

  • Kim, Jong-Kwon;Seong, Ki-Jun;Cho, Kyeum-Rae;Jang, Chul-Soon
    • Journal of Advanced Navigation Technology
    • /
    • v.9 no.2
    • /
    • pp.87-92
    • /
    • 2005
  • An altitude control using a fuzzy controller was performed for a series of research for autonomous flight control of industrial unmanned helicopters. The 3m class gasoline engined unmanned helicopter was designed, and using the designed specifications, Takagi-Sugeno-Kang type fuzzy controller was designed. The input membership functions were generated using target altitude, altitude error and velocity of unmanned helicopter. With these membership functions, the control inputs for altitude control were calculated. These control input signal can control the main rotor's pitch and determine the velocity and altitude of the unmanned helicopter. Also, the altitude control performance of the designed fuzzy controller was evaluated by computer simulations

  • PDF

Development and Verification of Active Vibration Control System for Helicopter (소형민수헬기 능동진동제어시스템 개발)

  • Kim, Nam-Jo;Kwak, Dong-Il;Kang, Woo-Ram;Hwang, Yoo-Sang;Kim, Do-Hyung;Kim, Chan-Dong;Lee, Ki-Jin;So, Hee-Soup
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.50 no.3
    • /
    • pp.181-192
    • /
    • 2022
  • Active vibration control system(AVCS) for helicopter enables to control the vibration generated from the main rotor and has the superb vibration reduction performance with low weight compared passive vibration reduction device. In this paper, FxLMS algorithm-based vibration control software of the light civil helicopter tansmits the control command calculated using the signals of the tachometer and accelerometers to the circular force generator(CFG) is developed and verified. According to the RTCA DO-178C/DO-331, the vibration control software is developed through the model based design technique, and real-time operation performance is evaluated in PILS(processor in-the loop simulation) and HILS(hardware in-the loop simulation) environments. In particular, the reliability of the software is improved through the LDRA-based verification coverage in the PIL environments. In order to AVCS to light civil helicopter(LCH), the dynamic response characteristic model is obtained through the ground/flight tests. AVCS configuration which exhibits the optimal performance is determined using system optimization analysis and flight test and obtain STC certification.

A Study on Helicopter Trajectory Tracking Control using Neural Networks (신경회로망을 이용한 헬리콥터 궤적추종제어 연구)

  • Kim, Yeong Il;Lee, Sang Cheol;Kim, Byeong Su
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.31 no.3
    • /
    • pp.50-57
    • /
    • 2003
  • In the paper, the design and evaluation of a helicopter trajectory tracking controller are presented. The control algorithm is implemented using the feedback linearization technique and the two time-scale separation architecture. In addition, and on-line adaptive architecture that employs a neural network compensating the model inversion error caused by the deficiency of full knowledge of helicopter dynamic is applied to augment the attitude control system. Trajectory tracking performance of the control system in evaluated using modified TMAN simulation program representing as Apache helicopter. It is show that the on-line neural network in an adaptive control architecture is very effective in dealing with the performance depreciation problem of the trajectory tracking control caused by insufficient information of dynamics.

Applications of Fuzzy Logic and Neural Network Technology to Flight Control System Design: an Overview (퍼지논리 및 신경회로망 기법을 적용한 비행제어시스템 설계 고찰)

  • 홍성경;김병수
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.10 no.2
    • /
    • pp.103-111
    • /
    • 2004
  • In this survey paper, we attempt to introduce the subjects of fuzzy logic and neural network technology for flight control systems based on completed and ongoing research programs other developed countries. Also, it is prepared with intention of providing the reader with an overview of related topics and a basic concepts of fuzzy logic and neural network control. The focus is on relatively practical control schemes realistically applicable in the area of flight control system design that could find its usage in the near future in our country. It is hoped that this paper will serve as a useful reference and even concepts provide solutions far current problems and future designs.

Nonlinear Adaptive Flight Control Using Neural Networks and Backstepping (신경회로망 및 Backstepping 기법을 이용한 비선형 적응 비행제어)

  • Lee, Taeyoung;Kim, Youdan
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.6 no.12
    • /
    • pp.1070-1078
    • /
    • 2000
  • A nonlinear adaptive flight control system is proposed using a backstepping controller with neural network controller. The backstepping controller is used to stabilize all state variables simultaneously without the two-timescale assumption that separates the fast dynamics, involving the angular rates of the aircraft, from the slow dynamics which includes angle of attack, sideslip angle, and bank angle. It is assumed that the aerodynamic coefficients include uncertainty, and an adaptive controller based on neural networks is used to compensate for the effect of the aerodynamic modeling error. It is shown by the Lyapunov stability theorem that the tracking errors and the weights of neural networks exponentially converge to a compact set. Finally, nonlinear six-degree-of-freedom simulation results for an F-16 aircraft model are presented to demonstrate the effectiveness of the proposed control law.

  • PDF

A Robust Attitude Controller Design Using Lyapunov Redesign Technique for Spacecraft (Lyapunov 재설계 기법을 이용한 우주비행체 강인 자세제어기 설계)

  • Nam, Heon-Seong;Lyou, Joon
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.8 no.4
    • /
    • pp.313-318
    • /
    • 2002
  • A robust attitude controller using Lyapunov redesign technique for spacecraft is proposed. In this controller, qua- ternion feedback is considered to have the attitude maneuver capability very close to the eigen-axis rotation. The controller consists of three parts: the nominal feedback parts which is a PD-type controller for the nominal system without uncertainties, the additional term compensating for the gyroscopic motion, and the third part for ensuring robustness to uncertainties. Lyapunov stability criteria is applied to stability analysis. The performance of the proposed controller is demonstrated via computer simulation.