• Title/Summary/Keyword: 비파괴기술

Search Result 664, Processing Time 0.021 seconds

Identification of High Pressure-High Temperature Treated Gem Diamonds using a Micro-Raman Spectroscopy (고압고온 처리된 보석용 다이아몬드의 마이크로라만 분석에 의한 감별 연구)

  • Song, Oh-Sung;Kim, Jong-Ryul
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.7 no.5
    • /
    • pp.817-822
    • /
    • 2006
  • Diamonds have been widely employed as polishing media for precise machining and noble substrates for microelectronics. The recent development of the split sphere press has led to the enhancement of low quality natural diamonds. Synthesized and treated diamonds are sometimes traded deceptively as high quality natural diamonds because it is hard to distinguish among these diamonds with conventional gemological characterization method. Therefore, we need to develop a new identification method that is cheap, fast, and non-destructive. We proposed using a new method of micro-Raman spectroscopy for checking the local HPHT residual stress to distinguish these diamonds from natural ones. We observe unique ~10f compressive and tensile strains at Type I and Type II diamonds after HPHT treatment. Our result implies that our proposed methods may be appropriate fur identification of the treated diamonds with appropriate reference samples.

  • PDF

The Estimation of the Target Position and Size Using Multi-layer Neural Network in Electrical Impedance Tomography (전기 임피던스 단층촬영법에서 다층 신경회로망을 이용한 표적의 위치와 크기 추정)

  • Kim, Ji-Hoon;Kim, Chan-Yong;Cho, Tae-Hyun;Lee, In-Soo
    • The Journal of Korean Institute of Information Technology
    • /
    • v.16 no.11
    • /
    • pp.35-41
    • /
    • 2018
  • Electrical impedance tomography (EIT) is a kind of nondestructive testing technique that obtains the internal resistivity distribution from the voltages measured at the electrodes located outside the area of interest. However, an image reconstruction problem in EIT has innate non-linearity and ill-posedness, so that it is difficult to obtain satisfactory reconstructed results. In general, a neural network can efficiently model the input and output relationships of a non-linear system. This paper proposes a method for estimating the position and size of a circular target using a multi-layer neural network. To verify the performance of the proposed method, neural network was trained and various computer simulations were performed and satisfactory performance was verified.

Damage Analysis of Thin Steel Members with Bolt Connection Using Lamb Wave and PZT Element (Lamb파 전달을 이용한 볼트 연결된 얇은 강판부재의 손상해석)

  • Rhee, Inkyu;Kwak, Hyo-Gyoung;Kim, Jae Hong
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.26 no.4A
    • /
    • pp.587-596
    • /
    • 2006
  • A half portion of Korean railway bridges depends on the type of steel plate girder bridge. Since these bridges have been built in the early stage of Korean economical boom, numerous maintenance effort suffers from aging and progressive degradation issues at present. In accordance with these efforts, this paper would like to address the detailed analyses of thin steel plates with bolts in order to simulate the connection regions of steel plate girder bridge. The fundamental modal analysis, transient dynamic analysis with 3D piezoelectric element in open circuit loop and signal process with aids of TOF(time of flight) and WC(wavelet coefficient) are extensively discussed.

Edge Detection and ROI-Based Concrete Crack Detection (Edge 분석과 ROI 기법을 활용한 콘크리트 균열 분석 - Edge와 ROI를 적용한 콘크리트 균열 분석 및 검사 -)

  • Park, Heewon;Lee, Dong-Eun
    • Korean Journal of Construction Engineering and Management
    • /
    • v.25 no.2
    • /
    • pp.36-44
    • /
    • 2024
  • This paper presents the application of Convolutional Neural Networks (CNNs) and Region of Interest (ROI) techniques for concrete crack analysis. Surfaces of concrete structures, such as beams, etc., are exposed to fatigue stress and cyclic loads, typically resulting in the initiation of cracks at a microscopic level on the structure's surface. Early detection enables preventative measures to mitigate potential damage and failures. Conventional manual inspections often yield subpar results, especially for large-scale infrastructure where access is challenging and detecting cracks can be difficult. This paper presents data collection, edge segmentation and ROI techniques application, and analysis of concrete cracks using Convolutional Neural Networks. This paper aims to achieve the following objectives: Firstly, achieving improved accuracy in crack detection using image-based technology compared to traditional manual inspection methods. Secondly, developing an algorithm that utilizes enhanced Sobel edge segmentation and ROI techniques. The algorithm provides automated crack detection capabilities for non-destructive testing.

Development of non-destructive measurement method for discriminating disease-infected seed potato using visible/near-Infrared reflectance technique (광 반사방식을 이용한 감염 씨감자 비파괴 선별 기술 개발)

  • Kim, Dae-Yong;Cho, Byoung-Kwan;Lee, Youn-Su
    • Korean Journal of Agricultural Science
    • /
    • v.39 no.1
    • /
    • pp.117-123
    • /
    • 2012
  • Pathogenic fungi and bacteria such as Pectobacterium atrosepticum, Clavibacter michiganensis subsp. sepedonicus, Verticillium albo-atrum, and Rhizoctonia solani were the major microorganism which causes diseases in seed potato during postharvest process. Current detection method for disease-infected seed potato relies on human inspection, which is subjective, inaccurate and labor-intensive method. In this study, a reflectance spectroscopy was used to classify sound and disease-infected seed potatoes with the spectral range from 400 to 1100 nm. Partial least square discriminant analysis (PLS-DA) with various preprocessing methods was used to investigate the feasibility of classification between sound and disease-infected seed potatoes. The classification accuracy was above 97 % for discriminating disease seed potatoes from sound ones. The results show that Vis/NIR reflectance method has good potential for non-destructive sorting for disease-infected seed potatoes.

Study on non-destructive sorting technique for lettuce(Lactuca sativa L) seed using fourier transform near-Infrared spectrometer (FT-NIR을 이용한 상추(Lactuca sativa L) 종자의 비파괴 선별 기술에 관한 연구)

  • Ahn, Chi-Kook;Cho, Byoung-Kwan;Kang, Jum-Soon;Lee, Kang-Jin
    • Korean Journal of Agricultural Science
    • /
    • v.39 no.1
    • /
    • pp.111-116
    • /
    • 2012
  • Nondestructive evaluation of seed viability is one of the highly demanding technologies for seed production industry. Conventional seed sorting technologies, such as tetrazolium and standard germination test are destructive, time consuming, and labor intensive methods. Near infrared spectroscopy technique has shown good potential for nondestructive quality measurements for food and agricultural products. In this study, FT-NIR spectroscopy was used to classify normal and artificially aged lettuce seeds. The spectra with the range of 1100~2500 nm were scanned for lettuce seeds and analyzed using the principal component analysis(PCA) method. To classify viable seeds from nonviable seeds, a calibration modeling set was developed with a partial least square(PLS) method. The calibration model developed from PLS resulted in 98% classification accuracy with the Savitzky-Golay $1^{st}$ derivative preprocessing method. The prediction accuracy for the test data set was 93% with the MSC(Multiplicative Scatter Correction) preprocessing method. The results show that FT-NIR has good potential for discriminating non-viable lettuce seeds from viable ones.

Study on Thickness Measurement about Insulation Rubber of Steel Motor Case Using Ultrasonic Resonance (초음파 공진을 이용한 스틸 연소관의 내열 고무 두께 측정 기법 연구)

  • Kim, Dong-Ryun;Kim, Jae-Hoon
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.16 no.5
    • /
    • pp.89-96
    • /
    • 2012
  • The rubber side could be contaminated using the existing pulse echo method because the ultrasonic wave was incident on the rubber side from the interior of the steel motor case, which could lead to the critical disbond defect. To develop the test method which can be replaced the existing method, the ultrasonic wave was incident on steel face of the steel/rubber adhesive test block. Rubber resonance frequencies measured from the steel/rubber adhesive test block were in good agreement with theoretically predicted rubber resonance frequencies. This paper was described about the ultrasonic resonance method to convert the rubber resonance frequency into the rubber thickness.

Development of Inverse Solver based on TSVD in Electrical Impedance Tomography (전기 임피던스 단층촬영법에서 TSVD 기반의 역문제 해법의 개발)

  • Kim, Bong Seok;Kim, Chang Il;Kim, Kyung Youn
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.54 no.4
    • /
    • pp.91-98
    • /
    • 2017
  • Electrical impedance tomography is a nondestructive imaging technique to reconstruct unknown conductivity distribution based on applied current data and measured voltage data through an array of electrodes attached on the periphery of a domain. In this paper, an inverse method based on truncated singular value decomposition is proposed to solve the inverse problem with the generalized Tikhonov regularization and to reconstruct the conductivity distribution. In order to reduce the inverse computational time, truncated singular value decomposition is applied to the inverse term after the generalized regularization matrix is taken out from the inverse matrix term. Numerical experiments and phantom experiments have been performed to verify the performance of the proposed method.

Online Image Reconstruction Using Fast Iterative Gauss-Newton Method in Electrical Impedance Tomography (전기 임피던스 단층촬영법에서 빠른 반복적 가우스-뉴턴 방법을 이용한 온라인 영상 복원)

  • Kim, Chang Il;Kim, Bong Seok;Kim, Kyung Youn
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.54 no.4
    • /
    • pp.83-90
    • /
    • 2017
  • Electrical impedance tomography is a relatively new nondestructive imaging modality in which the internal conductivity distribution is reconstructed based on the injected currents and measured voltages through electrodes placed on the surface of a domain. In this paper, a fast iterative Gauss-Newton method is proposed to increase the spatial resolution as well as reduce the inverse computational time in the inverse problem, which could be applied to online binary mixture flow applications. To evaluate the reconstruction performance of the proposed method, numerical experiments have been carried out and the results are analyzed.

Imaging Technique Based on Continuous Terahertz Waves for Nondestructive Inspection (비파괴검사를 위한 연속형 테라헤르츠 파 기반의 영상화 기술)

  • Oh, Gyung-Hwan;Kim, Hak-Sung
    • Journal of Sensor Science and Technology
    • /
    • v.27 no.5
    • /
    • pp.328-334
    • /
    • 2018
  • The paper reviews an improved continuous-wave (CW) terahertz (THz) imaging system developed for nondestructive inspection, such as CW-THz quasi-time-domain spectroscopy (QTDS) and interferometry. First, a comparison between CW and pulsed THz imaging systems is reported. The CW-THz imaging system is a simple, fast, compact, and relatively low-cost system. However, it only provides intensity data, without depth and frequency- or time-domain information. The pulsed THz imaging system yields a broader range of information, but it is expensive because of the femtosecond laser. Recently, to overcome the drawbacks of CW-THz imaging systems, many studies have been conducted, including a study on the QTDS system. In this system, an optical delay line is added to the optical arm leading to the detector. Another system studied is a CW-THz interferometric imaging system, which combines the CW-THz imaging system and far-infrared interferometer system. These systems commonly obtain depth information despite the CW-THz system. Reportedly, these systems can be successfully applied to fields where pulsed THz is used. Lastly, the applicability of these systems for nondestructive inspection was confirmed.