• Title/Summary/Keyword: 비파괴기술

Search Result 663, Processing Time 0.026 seconds

Application of Acoustic Emission for Assessing Deterioration in Reinforced Concrete Beams (철근 콘크리트 빔의 노화도 평가를 위한 음향방출 기술의 응용)

  • Yoon, Dong-Jin;Park, Phi-Lip;Lee, Seung-Seok
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.20 no.4
    • /
    • pp.276-284
    • /
    • 2000
  • The acoustic emission (AE) behavior of reinforced concrete beams tested under flexural loading was investigated to characterize and identify the source of damage. This research was aimed at identifying the characteristic AE response associated with micro-crack development, localized crack propagation, corrosion, and debonding of the reinforcing steel. Concrete beams were prepared to isolate the damage mechanisms by using plain, notched-plain, reinforced, and corroded-reinforced specimens. The beams were tested using four-point cyclic step-loading. The AE response was analyzed to obtain key parameters such as the time history of AE events, the total number and rate of AE events, and the characteristic features of the waveform. Initial analysis of the AE signal has shown that a clear difference in the AE response is observed depending on the source of the damage. The Felicity ratio exhibited a correlation with the overall damage level, while the number of AE events during unloading can be an effective criterion to estimate the level of corrosion distress in reinforced concrete structures. Consequently, AE measurement characterization appears to provide a promising approach for estimating the level of deterioration in reinforced concrete structure.

  • PDF

Remote field Eddy Current Technique Development for Gap Measurement of Neighboring Tubes of Nuclear Fuel Channel in Pressurized Heavy Water Reactor (중수로 핵연료채널과 인접관의 간격측정을 위한 원거리장 와전류검사 기술개발)

  • Jung, H.K.;Lee, D.H.;Lee, Y.S.;Huh, H;Cheong, Y.M.
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.24 no.2
    • /
    • pp.164-170
    • /
    • 2004
  • Liquid Injection Nozzle(LIN) tube and Calandria tube(CT) in pressurized Heavy Water Reactor (PHWR) are .ross-aligned horizontally. These neighboring tubes can contact each other due to the sag of the calandria tube resulting from the irradiation creep and thermal creep, and fuel load, etc. In order to judge the contact which might be the safety concern, the remote field eddy current (RFEC) technology is applied for the gap measurement in this paper. LIN can be detected by inserting the RFEC probe into pressure tube (PT) at the crossing point directly. To obtain the optimal conditions of the RFEC inspection, the sensitivity, penetration and noise signals are considered simultaneously. The optimal frequency and coil spacing are 1kHz and 200mm respectively. Possible noises during LIN signal acquisition are caused by lift-off, PT thickness variation, and gap variation between PT and CT. The simulated noise signals were investigated by the Volume Integral Method(VIM). Signal analysis on the voltage plane describes the amplitude and shape of LIN and possible defects at several frequencies. All the RFEC measurements in the laboratory were done in variance with the CT/LIN gap and showed the relationship between the LIN gap and the signal parameters by analyzing the voltage plane signals.

Study on the Nonlinear Electromagnetic Acoustic Resonance Method for the Evaluation of Hidden Damage in a Metallic Material (금속 재료의 잠닉손상 평가를 위한 비선형 전자기음향공진 기법에 관한 연구)

  • Cho, Seung-Wan;Cho, Seung-Hyun;Park, Choon-Su;Seo, Dae-Cheol;Jhang, Kyung-Young
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.34 no.4
    • /
    • pp.277-282
    • /
    • 2014
  • Recently, much attention has been paid to nonlinear ultrasonic technology as a potential tool to assess hidden damages that cannot be detected by conventional ultrasonic testing. One nonlinear ultrasonic technique is measurement of the resonance frequency shift, which is based on the hysteresis of the material elasticity. Sophisticated measurement of resonance frequency is required, because the change in resonance frequency is usually quite small. In this investigation, the nonlinear electromagnetic acoustic resonance (NEMAR) method was employed. The NEMAR method uses noncontact electromagnetic acoustic transducers (EMATs) in order to minimize the effect of the transducer on the frequency response of the object. Aluminum plate specimens that underwent three point bending fatigue were tested with a shear wave EMAT. The hysteretic nonlinear parameter ${\alpha}$, a key indicator of damage, was calculated from the resonance frequency shift at several levels of input voltage. The hysteretic nonlinear parameter of a damaged sample was compared to that of an intact one, showing a difference in the values.

Endoscopic Bio-Imaging Using Optical Coherence Tomography (마이크로 내시경 및 첨단 광 단층촬영기법을 이용한 생체 이미징)

  • Ahn, Yeh-Chan;Brenner, Matthew;Chen, Zhongping
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.31 no.5
    • /
    • pp.466-471
    • /
    • 2011
  • Optical coherence tomography(OCT) is an emerging medical diagnostic tool that draws great attention in medical and biological fields. It has a 10-100 times higher spatial resolution than that of the clinical ultrasound but lower imaging depth such as 1-2 mm. In order to image internal organs, OCT needs an endoscopic probe. In this paper, the principle of Fourier-domain optical coherence tomography with high-speed imaging capability was introduced. An OCT endoscope based on MEMS technology was developed. It was attached to the Fourier-domain OCT system to acquire three-dimensional tomographic images of gastrointestinal tract of New Zealand white rabbit. The endoscope had a two-axis scanning mirror that was driven by electrostatic force. The mirror stirred an incident light to sweep two-dimensional plane by scanning. The outer diameter of the endoscope was 6 mm and the mirror diameter was 1.2 mm. A three-dimensional image rendered by 200 two-dimensional tomographs with $200{\times}500$ pixels was displayed within 3.5 seconds. The spatial resolution of the OCT system was 8 ${\mu}m$ in air.

Verification of the Viability of Equipotential Switching Direct Current Potential Drop Method for Piping Wall Loss Monitoring with Signal Sensitivity Analysis (등전위 교번식 직류전위차법의 신호 정밀도 검증을 통한 배관 감육 진단 기술에의 적용성 검증)

  • Ryu, Kyung-Ha;Hwang, Il-Soon;Kim, Ji-Hyun
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.28 no.2
    • /
    • pp.191-198
    • /
    • 2008
  • Flow accelerated corrosion (FAC) phenomenon of low alloy carbon steels in nuclear power plant has been known as one of major degradation mechanisms. It has a potential to cause nuclear pipe rupture accident which may directly impact on the plant reliability and safety. Recently, the equipotential switching direct current potential drop (ES-DCPD) method has been developed, by the present authors, as a method to monitor wall loss in a piping. This method can rapidly monitor the thinning of piping, utilizing either the wide range monitoring (WiRM) or the narrow range monitoring (NaRM) technique. WiRM is a method to monitor wide range of straight piping, whereas NaRM focuses significantly on a narrow range such as an elbow. WiRM and NaRM can improve the reliability of the current FAC screening method that is based on computer modeling on fluid flow conditions. In this paper, the measurements by ES-DCPD are performed with signal sensitivity analyses in the laboratory environment for extended period and showed the viability of ES-DCPD for real plant applications.

Position Control Technique of Ultrasonic Scanner for an Automated Ultrasonic Testing Using Surface Wave (표면파를 이용한 자동 초음파탐상검사 주사장치의 위치제어 기술)

  • Lee, Jong-Po;Park, Chul-Hoon;Um, Byong-Guk
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.23 no.1
    • /
    • pp.30-37
    • /
    • 2003
  • In order to replace the manual ultrasonic testing(UT) with an automated UT(AUT), a scanner which enables us to control the positions of a transducer is essential. Encoders have been commonly used to obtain the position information from the conventional scanners controlled by motor. Encoders have various advantages in many aspects. However, if the slip of motor wheel occurs during scanning, various errors are involved in the position accuracy. Thus, the position information of encoders becomes meaningless in case of slip. The reliability of AUT results nay become serious problem. Hence, slip must be avoided, but it can not be completely avoided at present time. In this paper, a new idea that surface wave is used to solve this problem and replace encoders has been proposed. It is shown that this idea can be employed in AUT scanner without encoders. That is, one transducer transmitting surface wave is fixed and the other transducer attached to the scanner receives UT signal. Then, computer calculates the present position of scanner based on the information given by surface wave. Thus, the movement of a scanner can be controlled by the amount of input based on the information obtained.

Study on the Property of Guided Wave Signal Analysis according to Defect Shape of Small Size (소구경 튜브 결함 형태에 따른 유도초음파 신호 해석 특성에 관한 연구)

  • Gil, Doo-Song;Ahn, Yeon-Shik;Jung, Gye-Jo;Park, Sang-Gi;Kim, Yong-Gun
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.32 no.4
    • /
    • pp.410-417
    • /
    • 2012
  • Currently domestic thermal and nuclear power plants are comprised of many type's condenser and steam generator tubes to produce the electricity of good quality. There are some methods to inspect these tubes in the event that several defects were discovered in these facilities. Among many non-destructive methods, we used guided wave to inspect the soundness of tubes, because this method is very fast to detect the defect and very simple to install the equipment and also, can inspect up to the long range at a fixed point. Also, this method has a drawback that does not detect a very small size defect. So, we made an effort to overcome this drawback through the experimentation and signal analysis according to the size and shape of the defect through the manufacture of various artificial cracks capable to generate within the small size tube in the study and we anticipate that these detect limits can be overcome along with the development of the signal processing and manufacturing technology of the sensor for the inspection.

Development of the Phased Array Ultrasonic Testing Technique for Nuclear Power Plant's Small Bore Piping Socket Weld (원전 소구경 배관 소켓용접부 위상배열 초음파검사 기술 개발)

  • Yoon, Byung-Sik;Kim, Yong-Sik;Lee, Jeong-Seok
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.33 no.4
    • /
    • pp.368-375
    • /
    • 2013
  • Failure of small bore piping welds is a recurring problem at nuclear power plants. And the socket weld cracking in small bore piping has caused unplanned plant shutdowns for repair and high economic impact on the plants. Consequently, early crack detection, including the detection of manufacturing defects, is of the utmost importance. Until now, the surface inspection methods has been applied according to ASME Section XI requirements. But the ultrasonic inspection as a volumetric method is also applying to enforce the inspection requirement. However, the conventional manual ultrasonic inspection techniques are used to detect service induced fatigue cracks. And there was uncertainty on manual ultrasonic inspection because of limited access to the welds and difficulties with contact between the ultrasonic probe and the OD(outer diameter) surface of small bore piping. In this study, phased array ultrasonic inspection technique is applied to increase inspection speed and reliability. To achieve this object, the 3.5 MHz phased array ultrasonic transducer are designed and fabricated. The manually encoded scanner was also developed to enhance contact conditions and maintain constant signal quality. Additionally inspection system is configured and inspection procedure is developed.

Precise Estimation of Nonlinear Parameter in Pulse-Like Ultrasonic Signal (펄스형 초음파 신호에서 비선형 파라미터의 정밀 추정)

  • Ha, Job;Jhang, Kyung-Young;Sasaki, Kimio;Tanaka, Hiroaki
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.26 no.2
    • /
    • pp.77-83
    • /
    • 2006
  • Ultrasonic nonlinearity has been considered as a solution for the detection of microcracks or interfacial delamination in a layered structure. The distinguished phenomenon in nonlinear ultrasonics is the generation of higher-order harmonic waves during the propagation. Therefore, in order to quantify the nonlinearity, the conventional method measures a parameter defined as the amplitude ratio of a second-order harmonic component and a fundamental frequency component included in the propagated ultrasonic wave signal. However, its application In field inspection is not easy at the present stage because no standard methodology has yet been made to accurately estimate this parameter. Thus, the aim of this paper is to propose an advanced signal processing technique for the precise estimation of a nonlinear ultrasonic parameter, which is based on power spectral and bispectral analysis. The method of estimating power spectrum and bispectrum of the pulse-like ultrasonic wave signal used in the commercial SAM (scanning acoustic microscopy) equipment is especially considered in this study The usefulness of the proposed method Is confirmed by experiments for a Newton ring with a continuous air gap between two glasses and a real semiconductor sample with local delaminations. The results show that the nonlinear parameter obtained tv the proposed method had a good correlation with the delamination.

Development of capacitive Micromachined Ultrasonic Transducer (II) - Analysis of Microfabrication Process (미세가공 정전용량형 초음파 탐촉자 개발(II) - 미세공정기술 분석)

  • Kim, Ki-Bok;Ahn, Bong-Young;Park, Hae-Won;Kim, Young-Joo;Kim, Kuk-Jin;Lee, Seung-Seok
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.24 no.6
    • /
    • pp.573-580
    • /
    • 2004
  • The main goal of this study was to develop a micro-fabrication process for the capacitive micromachined ultrasonic transducer (cMUT). In order to achieve this goal, the former research results of the micro-electro-mechanical system (MEMS) process for the cMUT were analyzed. The membrane deposition, sacrificial layer deposition and etching were found to be a main process of fabricating the cMUT. The optimal conditions for those microfabrication were determined by the experiment. The thickness, uniformity, and residual stress of the $Si_3N_3$ deposition which forms the membrane of the cMUT were characterized after growing the $Si_3N_3$ on Si-wafer under various process conditions. As a sacrificial layer, the growth rate of the $SiO_2$ deposition was analyzed under several process conditions. The optimal etching conditions of the sacrificial layer were analyzed. The microfabrication process developed in this study will be used to fabricate the cMUT.