• 제목/요약/키워드: 비파괴검사학회

검색결과 1,886건 처리시간 0.022초

Rail Inspection Using Noncontact Laser Ultrasonics

  • Kim, Nak-Hyeon;Sohn, Hoon;Han, Soon-Woo
    • 비파괴검사학회지
    • /
    • 제32권6호
    • /
    • pp.696-702
    • /
    • 2012
  • In this study, a noncontact laser ultrasonic system is proposed for rail defect detection. An Nd-Yag pulse laser is used for generation of ultrasonic waves, and the corresponding ultrasonic responses are measured by a laser Doppler vibrometer. For the detection of rail surface damages, the shape of the excitation laser beam is transformed into a line. On the other hand, a point source laser beam is used for the inspection of defects inside a rail head. Then, the interactions of propagating ultrasonic waves with defects are examined using actual rail specimens. Amplitude attenuation was mainly observed for a surface crack, and reflections were most noticeable from an internal damage. Finally, opportunities and challenges associated with real-time rail inspection from a high-speed train are discussed.

Noncontact Fatigue Crack Evaluation Using Thermoelastic Images

  • Kim, Ji-Min;An, Yun-Kyu;Sohn, Hoon
    • 비파괴검사학회지
    • /
    • 제32권6호
    • /
    • pp.686-695
    • /
    • 2012
  • This paper proposes a noncontact thermography technique for fatigue crack evaluation under a cyclic tensile loading. The proposed technique identifies and localizes an invisible fatigue crack without scanning, thus making it possible to instantaneously evaluate an incipient fatigue crack. Based on a thermoelastic theory, a new fatigue crack evaluation algorithm is proposed for the fatigue crack-tip localization. The performance of the proposed algorithm is experimentally validated. To achieve this, the cyclic tensile loading is applied to a dog-bone shape aluminum specimen using a universal testing machine, and the corresponding thermal responses induced by thermoelastic effects are captured by an infrared camera. The test results confirm that the fatigue crack is well identified and localized by comparing with its microscopic images.

Impact Localization for a Composite Plate Using the Spatial Focusing Properties of Advanced Signal Processing Techniques

  • Jeong, Hyunjo;Cho, Sungjong
    • 비파괴검사학회지
    • /
    • 제32권6호
    • /
    • pp.703-710
    • /
    • 2012
  • A structural health monitoring technique for locating impact position in a composite plate is presented in this paper. The method employs a single sensor and spatial focusing properties of time reversal(TR) and inverse filtering(IF). We first examine the spatial focusing efficiency of both approaches at the impact position and its surroundings through impact experiments. The imaging results of impact localization show that the impact location can be accurately estimated in any position of the plate. Compared to existing techniques for locating impact or acoustic emission source, the proposed method has the benefits of using a single sensor and not requiring knowledge of anisotropic material properties and geometry of structures. Furthermore, it does not depend on a particular mode of dispersive Lamb waves that is frequently used in other ultrasonic testing of plate-like structures.

Performance of Different Sensors for Monitoring of the Vibration Generated during Thermosonic Non-destructive Testing

  • Kang, Bu-Byoung
    • 비파괴검사학회지
    • /
    • 제31권2호
    • /
    • pp.111-117
    • /
    • 2011
  • Vibration monitoring is required for reliable thermosonic testing to decide whether sufficient vibration is achieved in each test for the detection of cracks. From a practical point of view, a cheaper and convenient monitoring method is better for the application to real tests. Therefore, the performance of different sensors for vibration monitoring was investigated and compared in this study to find a convenient and acceptable measurement method for thermosonics. Velocity measured by a laser vibrometer and strain provide an equivalent HI when measured at the same position. The microphone can provide a cheaper vibration monitoring device than the laser and the heating index calculated by a microphone signal shows similar characteristics to that calculated from velocity measured by the laser vibrometer. The microphone frequency response shows that it underestimates high frequency components but it is applicable to practical tests because it gives a conservative value of HI.

Effects of Material Modulus on Fracture Toughness of Human Enamel, a Natural Biocomposite

  • Mishra, Dhaneshwar;Yoo, Seung-Hyun
    • 비파괴검사학회지
    • /
    • 제31권3호
    • /
    • pp.287-293
    • /
    • 2011
  • The enamel, the upper layer of a tooth has remarkable capability of bearing severe loading on the tooth. The fracture behavior is important to understand the mechanism of load bearing and it could be very useful for developing new materials. Non-destructive evaluation of such materials will also benefit from this knowledge. The graded microstructures of enamel were modeled by finite element analysis software and the J-integrals and the stress intensity factors were evaluated as the fracture parameters. The results show that these parameters are location dependent. Those values increase when measured in the direction of dentine enamel junction. This finding matched well with experiments and implies many useful understanding of biomaterials and applications to new materials.

Damage Detection in Lab-Scaled Underwater PVC Pipes Using Cylindrical Lamb Waves

  • Woo, Dong-Woo;Na, Won-Bae
    • 비파괴검사학회지
    • /
    • 제31권3호
    • /
    • pp.271-277
    • /
    • 2011
  • This study presents a nondestructive test for underwater PVC pipes. To use guided ultrasonic waves, specially denoted by cylindrical Lamb waves, a test setup was made in a water tank using the pitch and catch mode and specimens were made to give artificial cutouts located in the circumferential direction of the pipes. Total three states of damaged levels were considered to see how the guided waves interact with the defects. For the experimental adjustments, three different pipe diameters (60, 90, 114 mm) were tested, and two factors - incident angle (10 and $40^{\circ}$) and distance (50 and 200 mm) - were tried. From the results, regardless of the diameters and two experimental factors, it is shown that the degrees of defects were recognized through amplitude and arrived time of the very first part of the received cylindrical Lamb waves. Between amplitude and arrived time, it is found that the amplitude gives more sensitive results.

Wireless Impedance-Based SUM for Bolted Connections via Multiple PZT-Interfaces

  • Nguyen, Khac-Duy;Kim, Jeong-Tae
    • 비파괴검사학회지
    • /
    • 제31권3호
    • /
    • pp.246-259
    • /
    • 2011
  • This study presents a structural health monitoring (SHM) method for bolted connections by using multi-channel wireless impedance sensor nodes and multiple PZT-interfaces. To achieve the objective, the following approaches are implemented. Firstly, a PZT-interface is designed to monitor bolt loosening in bolted connection based on variation of electro-mechanical(EM) impedance signatures. Secondly, a wireless impedance sensor node is designed for autonomous, cost-efficient and multi-channel monitoring. For the sensor platform, Imote2 is selected on the basis of its high operating speed, low power requirement and large storage memory. Finally, the performance of the wireless sensor node and the PZT-interfaces is experimentally evaluated for a bolt-connection model Damage monitoring method using root mean square deviation(RMSD) index of EM impedance signatures is utilized to estimate the strength of the bolted joint.

BWIM Using Measured Acceleration and Strain Data

  • Paik, In-Yeol;Lee, Seon-Dng;Shin, Soo-Bong
    • 비파괴검사학회지
    • /
    • 제31권3호
    • /
    • pp.233-245
    • /
    • 2011
  • A new BWIM(bridge weigh-in-motion) algorithm using both measured strain and acceleration data is proposed. To consider the effects of bridge vibration on the estimation of moving loads, the dynamic governing equation is applied with the known stiffness and mass properties but damping is ignored. Dynamic displacements are computed indirectly from the measured strains using the beam theory and accelerations are measured directly by accelerometers. To convert a unit moving load to its equivalent nodal force, a transformation matrix is determined. The incompleteness in the measured responses is considered in developing the algorithm. To examine the proposed BWIM algorithm, simulation studies, laboratory experiments and field tests were carried. In the simulation study, effects of measurement noise and estimation error in the vehicle speed on the results were investigated.

SNR Improvement of AE Signal for Detection of Gas Leak from Tubes under Vibratory Environment

  • Lee, Tae-Hun;Jhang, Kyung-Young;Kim, Jung-Kyu
    • 비파괴검사학회지
    • /
    • 제27권3호
    • /
    • pp.262-267
    • /
    • 2007
  • Detection of gas leak from a tube is a very important issue in the quality control of machines such as the heat exchanger of an air-conditioner, because leakage of operating gas directly reduces the performance of machines. The acoustic emission (AE) method is a common way to detect leak of gas, however its application under the environment of mechanical vibration is restricted since most AE detectors are very sensitive to external vibration noise. In order to overcome this problem, we propose a method based on the mode analysis of the Lamb wave. In this method, the dominant Lamb mode and its frequency are found first, and then a proper band-pass filter is used to retain only this frequency component. In this way, we could improve the SNR (signal-to-noise ratio) of AE signal generated by gas leak from the tube even under vibratory environment.

Remote Impedance-based Loose Bolt Inspection Using a Radio-Frequency Active Sensing Node

  • Park, Seung-Hee;Yun, Chung-Bang;Inman, Daniel J.
    • 비파괴검사학회지
    • /
    • 제27권3호
    • /
    • pp.217-223
    • /
    • 2007
  • This paper introduces an active sensing node using radio-frequency (RF) telemetry. This device has brought the traditional impedance-based structural health monitoring (SHM) technique to a new paradigm. The RF active sensing node consists of a miniaturized impedance measuring device (AD5933), a microcontroller (ATmega128L), and a radio frequency (RF) transmitter (XBee). A macro-fiber composite (MFC) patch interrogates a host structure by using a self-sensing technique of the miniaturized impedance measuring device. All the process including structural interrogation, data acquisition, signal processing, and damage diagnostic is being performed at the sensor location by the microcontroller. The RF transmitter is used to communicate the current status of the host structure. The feasibility of the proposed SHM strategy is verified through an experimental study inspecting loose bolts in a bolt-jointed aluminum structure.