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BWIM Using Measured Acceleration and Strain Data

Inyeol Paik*, Seon-Ung Lee** and Soobong Shin*** T

Abstract A new BWIM(bridge weigh-in-motion) algorithm using both measured strain and acceleration data is
proposed. To consider the effects of bridge vibration on the estimation of moving loads, the dynamic governing
equation is applied with the known stiffness and mass properties but damping is ignored. Dynamic displacements
are computed indirectly from the measured strains using the beam theory and accelerations are measured directly
by accelerometers. To convert a unit moving load to its equivalent nodal force, a transformation matrix is
determined. The incompleteness in the measured responses is considered in developing the algorithm. To examine
the proposed BWIM algorithm, simulation studies, laboratory experiments and field tests were carried. In the
simulation study, effects of measurement noise and estimation error in the vehicle speed on the results were

investigated.
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1. Introduction

Correct identification of loads moving over a
bridge is essential for its maintenance and
design[1]. Many experimental studies have been
carried out on bridges to identify axle loads and
to evaluate their live load effects on bridges
[2-9]. Differently from WIM(weigh-in-motion)
methods using sensors directly embedded on the
road[6,10], a BWIM(bridge WIM) method
estimates moving loads indirectly by using the
measured bridge response[3]. Most available
BWIM methods have been developed by using
measured strains and static moment influence
supported beam[11,12].
Because a bridge vibrates due to passing
vehicles, however, the BWIM algorithms using

lines of a simply

the static moment influence lines cause inherent
errors in estimating the moving loads. To
overcome this problem, some dynamic algorithms
have been developed and examined[13-19].

However, the available BWIM algorithms using
dynamic responses could not be successfully
applied to actual bridges because applications
were limited to a single-degree- of-freedom
system in some algorithms or because
information on the state responses at all the
degrees-of-freedom were required in the others.

The paper presents a BWIM algorithm using
the structural dynamic governing equation. To
apply it, structural matrices and state responses
should be identified and provided. About the
structural  properties,  stiffness and  mass
properties are assumed to be known but
damping is ignored by assuming that its effects
are negligible while loads are moving on a
bridge. About structural responses, acceleration
time histories can be usually measured by
accelerometers in a field test. In addition, since
damping is assumed to be negligible, velocity
time histories need not be obtained in the

proposed algorithm. However, displacement time
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histories should be measured or determined by
any means. When displacement time history is
computed numerically by integrating measured
acceleration, numeric errors in its calculation
cannot be avoided. Some methods for directly
measuring or computing displacement time
history have been introduced but the results may
reliable  yet[20]. In the

displacement  time

not so
algorithm,
analytically computed from measured strain data

proposed
history 1

by using the beam theory. Also, since it is
difficult to measure responses at all the degrees
of freedom, responses at the unmeasured degrees
of freedom are numerically computed by the
mode superposition.

The equivalent force vector in the dynamic
governing equation is converted from a unit
moving load by using a transformation matrix.
Since vehicles pass over a bridge in various
speeds and the resulting equivalent nodal forces
also vary depending on the speed, a nodal force
transformation matrix was constructed at each
vehicle speed and applied to estimate moving
loads inversely. However, since the shapes of
transformation matrices are equal regardless of
the vehicle speed, a standard form is determined
and then shortened or elongated with time for a
different vehicle speed.

To examine the proposed BWIM algorithm,
simulation studies, laboratory and also field tests
were carried out. In the simulation study, the
effects of error in vehicle speed and
measurement noise on the estimation results
were investigated. The speed emor can be
considered as the same as the position error of
a vehicle in time.

2. BWIM Algorithm Considering Dynamic
Effects

2.1 Dynamic Governing Equation

The structural dynamic governing equation is
defined by eqn. (1).

Mii{s) + Cu(?) + Ku(r) =f(r) (1)

where M(NxN), C(NxN), K(NxN) = mass,
damping, and stiffness, i,¥,u,f = acceleration,
velocity, displacement, and force vector at time
t, and N = number of degrees of freedom
{DOF), respectively.

In applying eqn. (1), it has been assumed
that mass and stiffness properties can be
determined from the given material and sectional
information or also can be identified through an
application of a system identification[21]. It has
been also assumed that damping force can be
ignored by assuming that the transient part of
vibration can be ignored while loads are moving
on a bridge. With these assumptions, eqn. (1)
can be reduced to eqn. (2). Therefore, it is
required to measure or formulate acceleration ii
and displacement u vectors at each time step to
identify force vector f directly from eqn. (2).

Mii(?) + Ku(r) =1(7) )
2.2 Computation of Unmeasured Responses

Actual civil structures usually include many
DOFs in finite clement modeling. However,
some DOFs are hard to be measured directly
even with current advanced technologies. Usual
field measurements include acceleration and
strain time history data to the limited DOFs of
a structure. Therefore, it is highly required to
develop an algorithm which can take account of
the incompleteness in both space and state of
measured data.

2.2.1 Computation of Unmeasured Acceleration

To consider the incompleteness in space
when accelerations are measured at limited
DOFs, acceleration can be divided into measured
and unmeasured parts at each time step and can
be related to the modal information as eqn. (3).
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where U, (N, x1),u, (N, x1) = measured and
unmeasured part of acceleration vector at time
step £, Pu(N,*xN,,), @ (N, xN,;) = measured
and unmeasured part of mode shape matrix
BNxN,,) §(N,, xD)= double differentiation
of generalized coordinate vector with respect to
time ¢, N, N,

unmeasured DOFs, and N,; = number of

number of measured and

utilized modes, respectively. The separation of
eqn. (3) can be identically applied to the
displacement vector as well.

Since the system matrices of M and K were
assumed as known information, the mode shape

matrix @® can be

computed numerically.

Therefore, by the least squared approach,
acceleration response at unmeasured DOFs can

be obtained by eqn. (4).

P L p ..
choeden o,
u, =04

Since eqn. (4) is basically least-squared, the
identifiability criterion of eqn. (5) should be
satisfied to prevent an under-determined system
of equations where multiple solutions may be
obtained. The identification results may be
usually improved when more modes are
involved in the computation. In the current
approach, therefore, the number of required
modes from the numerical computation is fixed

as equal to the number of measured DOFs.

2.2.2 Computation of Displacement

Any reliable scheme has not been developed
to measure dynamic displacements directly from
a structure. A double integration of acceleration
with initial conditions usually cannot result in

reliable displacement time history. Jeong et
al.f20]

decomposition signal of measured acceleration

proposed a method wusing wavelet
and applied it to actual bridge responses. But
the results are highly dependent on the selection
of some important time steps required to apply
the algorithm. Only a skilled engineer seems to
select them properly.

In the current context of the algorithm,
displacements are to be computed from dynamic
strain measured at the same locations as the
accelerometers. Since the bending behavior is
dominant in the girders of a bridge in the
longitudinal direction, the following relationship of
eqn. (6) can be formulated from the beam theory.

g, (x.0)=—yu (x,0)=-y, @ (x)q(t) (6)

u:@(Nm x 1) N (D’r’n(Nm x de) = double

differentiation of displacement vector and mode

where

shape matrix with respect to the coordinate x in
the longitudinal direction, &.(N,*I) = strain

measured at  the same locations of

q(N,, x1) -

coordinate related to the strain, yc = distance

accelerometers, generalized
from the neutral axis, respectively. Since the

beam theory is applied in the formulation,

theoretical values of P can be casily computed
at the locations of strain gage.

The generalized coordinate q can be
computed at each time step ¢ by eqn. (7) and
then the whole displacement vector can be

computed by eqn. (8).
a-[o o]0, ™

u=0q (®)

2.3 Transformation of Moving Loads to

Equivalent Nodal Force

The force vector f in eqn. (2) is an
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equivalent nodal force in a discretized finite
element model. Since actual loads are moving
on a bridge, however, it is required to relate
moving loads to the equivalent nodal force as
eqn. (9). The actual loads can be obtained by
the least squared formulation of egqn. (10).

f() =T, v)p(®) ®

p@) =t T T 1) (10)

where T(VxN,) = transformation matrix between
the equivalent nodal force f(Ax1) and actual
loads p(N,x1} iIn a constant vehicle velocity v
and N, = the number of axle loads passing over
a bridge.

In numerical analysis, exact nodal force is
applied as a triangular shape as shown in Fig.
1. When dynamic response is simulated through
modal superposition with the consideration on
the unmeasured DOFs, however, nodal force
changes to the shape of an oscillating one in
Fig. 1.
number of measured DOFs but can be fixed

The shape varies depending on the

after the measurement layout is determined. The
qualitative shape of the nodal force does not
change so that it can be shortened or elongated
the wvehicle
Therefore, for simplicity, a database can be

in time depending on speed.
constructed for various vehicle speeds with a
consistent time increment.

3. Examination of the Algorithm by
Simulation Studies

3.1 Application to a Simply Supported Beam

For the simulation study, a simple beam of
Fig. 2 has been utilized. The analytical solution
for the beam under a moving unit load given in
Biggs[22] was applied as in eqn. (11). The
vibration responses of the beam were simulated
by the superposition of a hundred modes.

N i _ .
u(x ) = 2_i 2/ sinQt-Q /o, sin ot sin 77

2 ol O 7 (b

where ©, =rm/L and @, = natural rotational
frequency of the beam.

A transformation matrix was constructed as
Fig. 3 with a constant sampling rate. In the
figure, a curve of dotted line is the computed
nodal forces with the moving unit load at each
measuring point. The values at the sampling
points of circles in each solid line are the
values for the transformation matrix. Tale of
each dotted line with negative values in most

part was truncated.
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Fig. 1 Comparison of unit load and its nodal force
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Fig. 2 Simple beam for the simulation study
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Fig. 3 Construction of a transformation matrix
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force (N)

Q

0 0 ‘5 i 15
4 {sec)
Fig. 4 Identified moving

transformation data

load using truncated

Fig. 4 shows the identified moving load
when a single load of 390kN passed over the
beam and measurement noise was not considered
in the simulation. The averaged identification
error was as small as 04%. The proposed
algorithm could provide perfect matches
theoretically if noise-free responses are applied
and all the nodal force data are used without

truncation.
3.2 Effects of Velocity Error

The proposed algorithm has assumed that
each load moves in a constant velocity on the
bridge and the moving speed can be detected. In
actual applications, however, it may not be easy
to check the actual moving speed of a vehicle
correctly. Also, a vehicle speed can vary during
its running on a bridge. Therefore, the effects of
velocity error should be investigated.

For the simulation study, proportional errors
vehicle speed were simulated and the
arec compared in Fig. 5. From these
it can be observed that the identification

in the
results
figures,
results oscillate more severely around when the
load moved out of the beam as velocity error
increased. The averaged identification errors are
summarized in Table 1 with respect to the
velocity The the
importance of correct determination of vehicle

eITor. results  illustrate

speed for reliable force identifications.
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Fig. 5 Identified moving loads with the velocity
errors
Table 1 Identification error with the velocity error
Velocity error 1% 2% 5% 10%
Wentification | o g40 | 0.408 | 349 | 13.00
error (%)
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3.3 Effects of Measurement Noise

Noise is  indispensable  from  field

measurements in  nature. In  the

current
simulation study, absolute white noise was
implemented in random. Since the proposed
algorithm of eqn. (2) requires computing
DOFs and
displacements at all the DOFs, effects of noise

in  acceleration and

accelerations at  unmeasured

strain  data on the
identification results were investigated separately.

Fig. 6 compares the identified results of a
single moving load when 1% proportional noise
was simulated in acceleration and in strain data,
respectively. The algorithm requires acceleration
and displacement responses as expressed in eqn.
(2) and displacements were computed from
strain data from eqn. (7) and eqn. (8). From
Fig. 6, it can be observed that noise in strain

data deteriorates the accuracy of the identified
results more severely. However, even with noise

108
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(b) Noise in strain

Fig. 6 Identified moving loads with different type of
noise
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Table 2 Identification error with the measurement

noise
Velocity error 1% 2% 5% 10%
Identification |, 54 092 | 9.01 5.26
error (%)
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in strain data, the overall trend of the identified
results oscillates around the actual value in a
quite symmetric manner. Thercfore, the moving
average scheme was applied to average out the
severe identification error. However, if we can
develop and apply a method to measure
deflections directly, then the noise due to strain
measurements may be reduced.

Fig. 7 shows the identified results obtained
by the moving average of the estimated values
with proportional errors in both acceleration and
strain data. The identification errors are
compared in Table 2. Even if the trend is not
so consistent as shown in Table 2, the averaged
identification error increases as the noise level is
increased in general.

4. Validation of the Algorithm through
Laberatory Experiments

To validate the applicability of the proposed
algorithm, laboratory experiments were carried
out. The model steel bridge of 6m long and the
model vehicle are shown in Fig. 8. The
sectional dimensions of the model bridge and
vehicle types of test cases are drawn in Fig. 9.
The model vehicles were controlled to move in
a constant speed on the bridge. The distance
between two axles of a model truck was
28.5 cm which is less than 1/20 of the length of
the bridge and is too short to identify the
weight of both axles reasonably.

Five accelerations were measured to the
vertical direction at an equal distance on both
sides of the bridge so that all the ten vertical
acceleration time histories were measured during
the vibration. Longitudinal strains were also
measured at the same locations as the
accelerometers below the side flanges. Since
noise in strain data is more critical for reliable
identification as demonstrated from the simulation
study, strains were measured by fiber optic

sensors rather than usual electric-type strain gages.

Before carrying out the moving load tests,
mass and stiffness properties of the beam model
were identified using measured modal data
obtained from impact hammer tests. The model
was also verified through static load tests by

comparing measured and computed vertical

displacements at different locations.

3em
-]
15cm.

3ot 100cm- 3eme

(a) Sectional dimensions

| 285 mm l

I 1192 N !

(b) One-vehicle case

1655 mm N

(¢} Two-vehicle case

Fig. 9 Sectional dimensions and vehicle type for
each test case
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displ. (m)

t (sec)

Fig. 10 Comparison of displacements measured
from LVDT and those from strains

08¢
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04+ ¢

0.2

t {sec)

Fig. 11 Transformed nodal force

Fig. 10 compares the displacements measured
from LVDT and those obtained from measured
strain data by eqn. (8). The closeness of the
demonstrates  the

two displacement results

usefulness of the strain measurements, even
though

displacements computed from strain data could

negligibly  small  fluctuation  of
be observed. The oscillating signal at the bottom
of the figure indicates the difference between
the two curves. Fig. 11 shows the nodal force

data for the transformation matrix.

4.1 Case 1: One Vehicle

As the first trial case, one model vehicle of
Fig. 9(b) moved on the bridge with various
speeds. Dynamic responses of accelerations and
strains were measured and the vehicle load was
identified as a single load along the beam.

The identified results are drawn in Fig. 12
for the speed of 1.54 m/sec and 2.85 m/sec,
respectively. Regardless of the vehicle speeds,
the trends of the two cases are almost identical.
In both speeds, the identified forces gradually
decrease as the vehicle approaches to the end of
the bridge. The averaged identification errors are

summarized in Table 3.
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g 800
S 600
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L
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200
0 1 2 3 4
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(a) 1.54m/sec
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1200 J| - P an/\'u’hf\ -
1600 |
Z 800
4]
E 600
400 (2.85 misec)
200
0 1 2

t (sec)
(b) 2.85m/sec

Fig. 12 Identified moving vehicle in two different

speeds
Table 3 Identification errors in different vehicle
speeds
. Identification
Case Velocity (m/sec) error (%)

1 1.54 0.92

(one vehicle) 2.85 1.26

L1t vehicle 1 3.15

I ) vehicle 2 2.00

(two vehicles) 191 vehicle 1 0.33

’ vehicle 2 0.89
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4.2 Case II. Two Vehicles

Two model vehicles were linked together by
a buckle as shown in Fig. 9(¢) so that two
vehicles moved in the same constant speed over
the bridge. Since the axle distance of each truck
is too small, two vehicles were identified as two
concentrated loads.

The identified results are drawn in Fig. 13
for the speed of 1.11 m/sec and 1.91 m/sec,
respectively. From the figure, it can be observed
that the identification of the front load sharply
jumped when the front vehicle moved out of the
bridge while that of the rear load sharply
jumped when the rear vehicle entered the
bridge. Both numerical jumps occurred when the

number of estimated loads was

suddenly
changed. The identification errors are also
in Table 3 and the results
demonstrate that the vehicle loads could be

reliably identified within a tolerable error even

summarized

with those sharp jumps.
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(a) 1.91m/sec

Fig. 13 Identified forces of two moving trucks in

two different speeds

5. Application of the Algorithm to a Field Test

The proposed algorithm was applied to a
field test on a simply supported plate-girder
bridge of 39.8 m span length locating in an
express highway in Korea as shown in Fig. 14.
As shown in the figure, fifteen accelerometers
and FBG sensors were installed under the bridge
so that three of each type of sensor was located
in the half of each girder. Five LVDTs were
installed in the middle of each girder to validate
the computed displacements from measured

strains. Piezo sensors were placed in front of the

(a) Plate-girder bridge

(b) Truck for the test

T

- G i l’d%‘;s
B LvDT

=== Piezo Sensor

FBG Sensor

Accelerometer

(c) Sensor layout

Fig. 14 Plate-girder bridge and the test layout
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bridge to check the location of a moving truck.
Because the total truck load was determined by
summing the partially identified load from each
girder, load distribution on each girder was not
considered. In other words, equal load
distribution on each girder was simply assumed.

Some test cases were carried out but only
the responses from the case with a single truck
moving on the bridge could be reliably used,
because some FBG sensors were malfunctioned
due to manufacturing problems. Also, the
number of sensors for each girder was limited

to three even the total number of accelerometers

estimated

Midspan Vertical Displacement (mm)
~

"o B 10 15 2 25
Time (sec}

(a) Girder 1

astimated
35p " measured

Midspan Vertical Displacement (mm)
~

¢ 5 10 15 20 25
Time (sec)

(c) Girder 3

Midspan Vertical Displacement (mm)
N

(] 5 10 15 2 2%
Time {sec)

(e) Girder 5

was fifteen. As a result, the computed
displacements in Fig. 15 show relatively large
gaps from those measured by LVDTs even for
the case of a single truck. To improve the
accuracy, the number of each type of sensors
should have been increased more than five on
each girder as tested through simulation studies
and laboratory experiments. Also, the maximum
displacements in each girder were quite small
values of less than 3 mm.

Since all the data were measured only in the
half of the bridge span and the ratio of the

truck axle distance to the half span length is

T T T T e
estimated
35 measured

Midspan Vertical Displacement (mm)

10 15
Time (sec)

(b) Girder 2

satimated
15 <o measured

Midspan Vertical Displacement (mm)
2 N

"
] B 0 15
Time (sec}

(d) Girder 4

Fig. 16 Comparison of computed displacements with those measured by LVDTs
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Fig. 16 Identified truck load
4725 m/199 m = 0.24, each axle load could and strain time  histories  simultaneously.

not be correctly identified. However, the total
truck load could be identified correctly as
shown in Fig. 16. The truck load was obtained
by summing up the identified load from each
girder as shown in Fig. 16. The identified total
load was 390.518 kN with 2% error from actual
truck load of 391.187 kN.

6. Conclusions

A BWIM

vibration is proposed by measuring acceleration

algorithm  considering bridge

Dynamic displacements were computed from the
measured strains by the beam theory. In the
algorithm, responses at the unmeasured DOFs
the
superposition. A force transformation matrix was

were computed numerically by mode
defined to relay an actual moving load to an
equivalent nodal force at each DOF. In the
dynamic governing equation, mass and stiffness
properties were assumed to be known a priori
but damping was ignored.

The

successfully

algorithm  has  been  examined

through simulation studies and
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laboratory experiments. It has been also applied
to field tests but the field applications could not
demonstrate its efficiency properly due to the
FBG and  the
improperness in the sensor layout. However, the

malfunctioned Sensors
identified resuits from the overall study could
illustrate the usefulness of the proposed idea.

In the simulation study, the effect of the
error in the vehicle speed and that of the
measurement noise on the identified results were
investigated. The error in the estimated vehicle
speed accelerated as the vehicle approached to
the end-gate of the bridge. Within less than 5%
error in the vehicle speed, the identification
About  the
measurement noise, noise in acceleration and

error  was  relatively  small.
strain data were separately investigated. Through
the simulation study, it could be observed that
noise in strain data could influence on the
identified results more severely than that in
acceleration. However, by using the moving
average scheme, the identified results could be

improved.
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