• Title/Summary/Keyword: 비파괴검사방법

Search Result 557, Processing Time 0.028 seconds

Development of 3D Image Processing Software using EMD for Ultrasonic NDE (EMD를 이용한 초음파 비파괴 평가용 3차원 영상처리 소프트웨어 개발)

  • Nam, Myung-Woo;Lee, Young-Seock;Yang, Ok-Yul
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.9 no.6
    • /
    • pp.1569-1573
    • /
    • 2008
  • This paper describes a development of Ultrasonic NDE software to analyze steam generator of nuclear power plant. The developed software includes classical analysis method such as A, B, C and D-scan images. And it can analyze the detected internal cracks using 3D image processing method. To do such, we obtain raw data from specimens of real pipeline of power plants, and get the envelope signal using Empirical Mode Decomposition from obtained ultrasonic 1-dimensional data. The reconstructed 3D crack images offer useful information about the location, shape and size of cracks, even if there is no special 2D image analysis technique. The developed analysis software is applied to specimens containing various cracks with known dimensions. The results of application showed that the developed software provided accurate and enhanced 2D images and reconstructed 3D image of cracks.

A Study on the Small Punch Test for Fracture Strength Evaluation of CANDU Pressure Tube Embrittled by Hydrogen (수소취화된 CANDU 압력관 재료의 파괴강도 평가를 위한 SP시험에 관한 연구)

  • Nho, Seung-Hwan;Ong, Jang-Woo;Yu, Hyo-Sun;Chung, Se-Hi
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.15 no.4
    • /
    • pp.549-560
    • /
    • 1996
  • The purpose of this study is to investigate the usefulness of small punch(SP) test using miniaturized specimens as a method for fracture strength evaluation of CANDU pressure tube embrittled by hydrogen. According to the test results, the fracture strength evaluation as a function of hydrogen concentration at $-196^{\circ}C$ was much better than that at room temperature, as the difference of SP fracture energy(Esp) with hydrogen concentration was more significant at $-196^{\circ}C$ than at room temperature for the hydrogen concentration up to 300ppm-H. It was also observed that the peak of average AE energy, the cumulative average AE energy and the cumulative average AE energy per equivalent fracture, strain increased with the increase of hydrogen concentration. From the results of load-displacement behaviors, Esp behaviors, macro- and micro-SEM fractographs and AE test it has been concluded that the SP test method using miniaturized specimen($10mm{\times}10mm{\times}0.5mm$) will be a useful test method to evaluate the fracture strength for CANDU pressure tube embrittled by hydrogen.

  • PDF

Flaw Evaluation of Bogie connected Part for Railway Vehicle Based on Convolutional Neural Network (CNN 기반 철도차량 차체-대차 연결부의 결함 평가기법 연구)

  • Kwon, Seok-Jin;Kim, Min-Soo
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.21 no.11
    • /
    • pp.53-60
    • /
    • 2020
  • The bogies of railway vehicles are one of the most critical components for service. Fatigue defects in the bogie can be initiated for various reasons, such as material imperfection, welding defects, and unpredictable and excessive overloads during operation. To prevent the derailment of a railway vehicle, it is necessary to evaluate and detect the defect of a connection weldment between the car body and bogie accurately. The safety of the bogie weldment was checked using an ultrasonic test, and it is necessary to determine the occurrence of defects using a learning method. Recently, studies on deep learning have been performed to identify defects with a high recognition rate with respect to a fine and similar defect. In this paper, the databases of weldment specimens with artificial defects were constructed to detect the defect of a bogie weldment. The ultrasonic inspection using the wedge angle was performed to understand the detection ability of fatigue cracks. In addition, the convolutional neural network was applied to minimize human error during the inspection. The results showed that the defects of connection weldment between the car body and bogie could be classified with more than 99.98% accuracy using CNN, and the effectiveness can be verified in the case of an inspection.

Ultrasound Wave Propagation in Thick Composites with Uniform Fiber Waviness (일정한 보강섬유 굴곡이 있는 두꺼운 복합재료에서의 초음파 전파에 관한 연구)

  • Chun, Heoung-Jae;Jang, Pil-Sung
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.21 no.3
    • /
    • pp.288-298
    • /
    • 2001
  • There has been a growing interest in thick composite materials especially for primary structures. Fiber waviness is one of the manufacturing defects frequently encountered in thick composite structures and affects the mechanical properties such as stiffness and strength significantly. Therefore, nondestructive evaluation technique that can detect fiber waviness of thick composite is very important for the integrity of structures. In this study, efforts were made to understand ultrasonic wave propagation in thick composites with uniform fiber waviness by adopting the ray and plane wave theories. Both theoretical and experimental investigations were conducted to understand the wave propagation in thick composites with uniform fiber waviness. The experiments were conducted on specially fabricated thick composite specimens with various degrees of uniform fiber waviness using the conventional through-transmission method to verify the predicted results. The experimental results showed good agreement with the theoretical predictions.

  • PDF

A Study on Utilizing Instrumented Indentation Technique for Evaluating In-field Integrity of Nuclear Structures (원전 구조물의 가동 중 건전성 평가를 위한 연속압입시험법의 활용에 관한 연구)

  • Song, Won-Seok;Kim, Seung-Gyu;Ahn, Hee-Jun;Kim, Kwang-Ho;Kwon, Dongil
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.33 no.2
    • /
    • pp.165-172
    • /
    • 2013
  • Power generating unit structures are designed and built to meet standard to secure its safety for expected life time. As the structures have been exposed to combined environment, degradation of structure material is accelerated and it can cause unexpected damage; evaluating precise mechanical properties of weak site like welded area is an essential research area as it is directly connected to safety issues. Existing measuring technique like tensile test requires specific size in testing specimen yet it is destructive method which is hard to apply on running structures. To overcome above mentioned limitation, IIT is getting limelight as it is non-destructive and simple method. In this study, latest technique is introduced to evaluate tensile property and residual stress by analyzing stress field occurs under the indenter while IIT is performed. Test on welded area, the weak site of nuclear structures have been practiced and confirmed that IIT can be usefully applied to evaluate integrity in industry.

Effect of Magneto-acoustic Emission of Reactor Pressure Vessel Materials Irradiated by Neutrons (중성자에 조사된 원자로 압력용기 재료(SA508)의 Magneto-acoustic emission 효과)

  • Ok, Chi-Il;Lee, Jong-Kyu;Park, Duck-Gun;Hong, Jun-Hwa;Kim, Jang-Whan
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.19 no.6
    • /
    • pp.433-438
    • /
    • 1999
  • Magneto-acoustic emission (MAE) energy and hardness were measured in the reactor pressure vessel steel (SA508 Steel) for the various neutron fluence, irradiated dose up to $10^{18}n/cm^2$. The hardness was nearly a constant up to $10^{16}n/cm^2$, but it was rapidly increased with an increase of the neutron irradiation above $10^{17}n/cm^2$. It may be considered that the increase of hardness is due to the hindrance of dislocation motion induced defect clusters by irradiation. On the other hand. the MAE energy was slowly decreased as the neutron irradiation increased up to $10^{16}n/cm^2$ and it was rapidly decreased with an increase of the neutron irradiation above $10^{17}n/cm^2$. The decrease of the MAE energy may be considered as an increase of the defect clusters which is very sensitive to the $90^{\circ}$ domain wall motion. Furthermore, the change of MAE energy and hardness had nearly a linear relationship. but the change of MAE energy was more significant than the change of the hardness. Therefore, MAE may be considered as a very useful technique for the nondestructive evaluation of irradiation damage.

  • PDF

Analysis on Propagation Characteristics and Experimental Verification of $A_1$ Circumferential Waves in Nuclear Fuel Rods Coated with Oxide Layers (산화막 피복 원전 연료봉에서 $A_1$ 원주파의 전파 특성 해석과 실험적 검증)

  • Joo, Young-Sang;Ih, Jeong-Guon;Jung, Hyun-Kyu;Cheong, Yong-Moo
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.19 no.3
    • /
    • pp.189-199
    • /
    • 1999
  • The resonance scattering of acoustic waves from the cylindrical shells of nuclear fuel rods coated with oxide layers has been theoretically modeled and numerically analyzed for the propagation characteristics of the circumferential waves. The normal mode solutions of the scattering pressure of the coated shells have been obtained. The pure resonance components have been isolated using the newly proposed inherent background coefficients. The propagation characteristics of resonant circumferential waves for the shells coated with oxide layers are affected by the presence and the thickness of an oxide layer. The characteristics have been experimentally confirmed through the method of isolation and identification of resonances. The change of the phase velocity of the $A_1$ circumferential wave mode for the coated shell is negligible at the specified partial waves in spite of the presence of the oxide layer and the increase in coating thickness. Utilizing the invariability characteristics of the phase velocity of the $A_1$ mode, the oxide layer thickness of the coated shells can be estimated. A new nondestructive technique for the relative measurement of the coating thickness of coated shells has been proposed.

  • PDF

Application of Amplitude Demodulation to Acquire High-sampling Data of Total Flux Leakage for Tendon Nondestructive Estimation (덴던 비파괴평가를 위한 Total Flux Leakage에서 높은 측정빈도의 데이터를 획득하기 위한 진폭복조의 응용)

  • Joo-Hyung Lee;Imjong Kwahk;Changbin Joh;Ji-Young Choi;Kwang-Yeun Park
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.27 no.2
    • /
    • pp.17-24
    • /
    • 2023
  • A post-processing technique for the measurement signal of a solenoid-type sensor is introduced. The solenoid-type sensor nondestructively evaluates an external tendon of prestressed concrete using the total flux leakage (TFL) method. The TFL solenoid sensor consists of primary and secondary coils. AC electricity, with the shape of a sinusoidal function, is input in the primary coil. The signal proportional to the differential of the input is induced in the secondary coil. Because the amplitude of the induced signal is proportional to the cross-sectional area of the tendon, sectional loss of the tendon caused by ruptures or corrosion can be identified by the induced signal. Therefore, it is important to extract amplitude information from the measurement signal of the TFL sensor. Previously, the amplitude was extracted using local maxima, which is the simplest way to obtain amplitude information. However, because the sampling rate is dramatically decreased by amplitude extraction using the local maxima, the previous method places many restrictions on the direction of TFL sensor development, such as applying additional signal processing and/or artificial intelligence. Meanwhile, the proposed method uses amplitude demodulation to obtain the signal amplitude from the TFL sensor, and the sampling rate of the amplitude information is same to the raw TFL sensor data. The proposed method using amplitude demodulation provides ample freedom for development by eliminating restrictions on the first coil input frequency of the TFL sensor and the speed of applying the sensor to external tension. It also maintains a high measurement sampling rate, providing advantages for utilizing additional signal processing or artificial intelligence. The proposed method was validated through experiments, and the advantages were verified through comparison with the previous method. For example, in this study the amplitudes extracted by amplitude demodulation provided a sampling rate 100 times greater than those of the previous method. There may be differences depending on the given situation and specific equipment settings; however, in most cases, extracting amplitude information using amplitude demodulation yields more satisfactory results than previous methods.

Evaluation of Signal Stability of Fiber Optic Sensors with respect to Sensor Packaging Methods in Long-Term Monitoring (장기 모니터링 환경에서 센서 패키징 방법에 따른 광섬유 센서의 신호 안정성 평가)

  • Kang, Donghoon;Kim, Heon-Young;Kim, Dae-Hyun
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.36 no.4
    • /
    • pp.281-287
    • /
    • 2016
  • Fiber Bragg grating (FBG) sensors are applied in structural health monitoring (SHM) in various application fields because of their ease of multiplexing and capability of performing absolute measurements. Moreover, the packaging methods of FBG sensors accelerate their commercialization rapidly. However, long-term SHM exposes the FBG sensors to cyclic thermal loads, and a investigation is required because it finally leads to the signal instability of the FBG sensors. In this study, the effects of sensor packaging methods two methods are generally used for the FBGs: (bonding both sides of the FBG or bonding the FBG directly on signal stability of FBG sensors are investigated. Tests are conducted on specimens in a thermal chamber, over a temperature range from $-20^{\circ}C$ to $60^{\circ}C$ for 300 cycles. Signal characteristics such as Bragg wavelength, light intensity and full width at half maximum are examined and are compared with those of the FBG sensors, obtained in a previous study under direct bonding conditions. From the comparison, it is observed that the FBG sensors with bonding on both sides of the FBG demonstrate higher signal stabilities when exposed to cyclic thermal loads during long-term SHM. Consequently, it guarantees more effectiveness when packaging the FBG sensors.

Simulation of Separating Isoclinics and Isochromatics from Photoelastic Fringes of a Disk using 8-step Phase Shifting Methodology (광탄성 프린지 위상이동법을 적용한 디스크의 등경 및 등색프린지 분리법에 관한 시뮬레이션)

  • Baek, Tae-Hyun;Kim, Myung-Soo;Cho, Sung-Ho
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.21 no.2
    • /
    • pp.189-196
    • /
    • 2001
  • Photoelasticity is one of the most widely used methods for whole field stress analysis. In photoelasticity, the difference and the directions of the principal stresses we given isochromatic and isoclinic fringe patterns. Conventionally, principal stress directions are measured manually by relating the polarizer and analyzer of a plane polariscope at the same time. This is known to be the Tardy compensation method. This measurement can be very tedious and time consuming in whole field analysis. It is not possible to separate isoclincs from photoelastic fringes by conventional photoelastic technique. In this study, photoelastic theory is represented by Jones matrices and 4-steps and 8-steps phase shifting methods are described A feasibility study using computer simulation is done to separate isoclincs and isochomatics from photoelastic fringes of a circular disk under diametrical compression. Fringe patterns of the disk are generated using stress optic law. The magnitudes of isoclincs and isochromatics obtained from 8-step phase shifting method are compared with those of theories. From computer simulation, it is verified to separate isoclincs and isochomatics from photoelastic fringes.

  • PDF