Smoothing is a transmission plan that converts video data stored at a variable bit rate into a fixed bit rate. Algorithms for smoothing include CBA, which aims to minimize the number of transmission rate increases, MCBA, which minimizes the number of transmission rate changes, and MVBA algorithms that minimize the amount of transmission rate change. This paper compares the proposed algorithm with the CBA algorithm with various video data, buffer size, and performance evaluation factors as a follow-up to the proposed smoothing algorithm that minimizes (maximizes) the transmission rate increase (decrease) when the server requires more bandwidth The evaluation factors used were compared with the number of changes in the fps rate, the minimum fps, the average fps, fps variability, and the number of frames to be discarded. As a result of the comparison, the proposed algorithm showed superiority in comparing the number of fps rate changes and the number of frames discarded.
Smoothing is a transmission plan that converts video data stored at a variable bit rate into a constant bit rate. In the study of [6-7], when a data rate increase is required, the frame with the smallest increase is set as the start frame of the next transmission rate section, when a data tate decrease is required. the frame with the largest decrease is set as the start frame of the next transmission rate section, And the smoothing algorithm was proposed and performance was evaluated in an environment where network traffic is not considered. In this paper, the smoothing algorithm of [6-7] evaluates the adaptive CBA algorithm and performance with minimum frame rate, average frame rate, and frame rate variation from 512KB to 32MB with E.T 90 video data in an environment that considers network traffic. As a result of comparison, the smoothing algorithm of [6-7] showed superiority in the comparison of the minimum refresh rate.
The Journal of Korean Institute of Communications and Information Sciences
/
v.25
no.11B
/
pp.1879-1883
/
2000
디지털 자기 기록 저장기기에서 채널 밀도가 증가하면 심각한 인접심볼 간섭과 비선형 왜곡이 야기된다. 본 논문에서는 심각한 비선형 인접심볼 간섭과 비선형 왜곡을 극복하기 위한 방법으로 기존의 등화기 대신 NLTE(neural linear transversal equalizer)를 등화기로 사용하고 검출기로는 터보 코드를 사용한 NLTE/TC 구조를 제안한다. 채널 밀도 S=2.5에서 부분 삭제가 0.7 정도 존재할 때, 코드율이 8/9일 때는 $10^{-5}$의 비트 에러율을 18dB 이후에서 만족하며, 코드율이 16/17일 때는 20dB 이후에서 만족함을 알 수 있었다. 채널 밀도 S=3에서 부분 삭제가 0.6 정도 존재할 때 코드율이 8/9일 때는 $10^{-5}$의 비트 에러율을 22dB 이후에서 만족하고, 코드율이 16/17일 때는 24dB 이후에서 만족함을 확인할 수 있었다.
This paper present an 8kbps ACLMS-MPC(Amplitude Compensation and Least Mean Square - Multi Pulse Coding) coding method integrated with ACFBD-MPC(Amplitude Compensation Frequency Band Division - Multi Pulse Coding) and LMS-MPC(Least Mean Square - Multi Pulse Coding) used V/UV/S(Voiced / Unvoiced / Silence) switching, compensation in a multi-pulses each pitch interval and Unvoiced approximate-synthesis by using specific frequency in order to reduce distortion of synthesis waveform. In integrating several methods, it is important to adjust the bit rate of voiced and unvoiced sound source to 8kbps while reducing the distortion of the speech waveform. In adjusting the bit rate of voiced and unvoiced sound source to 8 kbps, the speech waveform can be synthesized efficiently by restoring the individual pitch intervals using multi pulse in the representative interval. I was implemented that the ACLMS-MPC method and evaluate the SNR of APC-LMS in coding condition in 8kbps. As a result, SNR of ACLMS-MPC was 15.0dB for female voice and 14.3dB for male voice respectively. Therefore, I found that ACLMS-MPC was improved by 0.3dB~1.8dB for male voice and 0.3dB~1.6dB for female voice compared to existing MPC, ACFBD-MPC and LMS-MPC. These methods are expected to be applied to a method of speech coding using sound source in a low bit rate such as a cellular phone or internet phone. In the future, I will study the evaluation of the sound quality of 6.9kbps speech coding method that simultaneously compensation the amplitude and position of multi-pulse source.
This paper proposes the rate control algorithm based on the S-JND (Saliency-Just Noticeable Difference) model for considering perceptual visual quality. The proposed rate control algorithm employs the S-JND model to simultaneously reflect human visual sensitivity and human visual attention for considering characteristics of human visual system. During allocating bits for CTU (Coding Tree Unit) level in a rate control, the bit allocation model calculates the S-JND threshold of each CTU in a picture. The threshold of each CTU is used for adaptively allocating a proper number of bits; thus, the proposed bit allocation model can improve perceptual visual quality. For performance evaluation of the proposed algorithm, the proposed algorithm was implemented on HM 16.9 and tested for sequences in Class B and Class C under the CTC (Common Test Condition) RA (Random Access), Low-delay B and Low-delay P case. Experimental results show that the proposed method reduces the bit-rate of 2.3%, and improves BD-PSNR of 0.07dB and bit-rate accuracy of 0.06% on average. We achieved MOS improvement of 0.03 with the proposed method, compared with the conventional method based on DSCQS (Double Stimulus Continuous Quality Scale).
Proceedings of the Korean Society of Broadcast Engineers Conference
/
2010.11a
/
pp.136-137
/
2010
본 논문에서는 고속, 저전력 비디오 부호화에 적합한 변환영역 Wyner-Ziv 분산비디오부호화기를 더욱 고속화하기 위한 병렬처리 방법을 제안한다. 기존에는 변환영역 Wyner-Ziv 분산비디오부호화를 위해 양자화 정보를 비트플레인단위로 분해후 이를 순차적으로 LDPCA 부호화하여 전체 부호화기 연산량에서 LDPCA의 복잡도가 약 54% 정도 차지하였고, 이는 고비트율로 부호화 할수록 더욱 증가하였다. 제안방법은 이를 개선하기 위해 여러 개의 비트플레인을 하나의 심벌 (symbol)로 묶어서 LDPCA 부호화를 수행하여 한 번의 연산으로 여러 개의 데이터를 동시에 처리할 수 있게 한다. 일종의 단일 명령 복수 데이터 처리 (SIMD, Single instruction, multiple data)에 의한 고속화 방법이다. 이를 통해 제안방법은 기존의 순차적 처리 방법에 비해 저비트율에서는 8배, 고비트율에서는 55배까지 LDPCA의 부호화 속도를 향상시켰다. 결과적으로 전체 부호화에서 LDPCA의 상대적인 복잡도 비율은 4%정도로 낮아지게 되었으며 Wyner-Ziv 영상의 부호화 속도도 약 1.5 ~ 2배까지 향상되었다. 제안방법은 LDPCA를 사용하는 다른 Wyner-Ziv 분산비디오부호화 구조에도 적용 가능할 것으로 기대한다.
The transmission of prerecorded and compressed video data without degradation of picture quality requires video servers to cope with large fluctuations in bandwidth requirement. Bandwidth smoothing techniques can reduce the burst of a variable-bit rate stream by prefetching data at a series of fixed rates and simplifying the allocation of resources in the video servers and the network. In this paper, the proposed smoothing algorithm results in the optimal transmission plans for (1) the smallest bandwidth requirements, (2) the minimum number of changes in transmission rate, and (3) the minimum amount of the server process overhead. The advantages of the proposed smoothing algorithm have been verified through the comparison with the existing smoothing algorithms in diverse environments.
The results of examining cultivation of tlyster mushroom using NSM(Non Sterilized Media) for determining the condition of artificially culturing oyster mushroom(Pleurotus ostreatus) are as follows. Mycelial growth an[1 density of oyster mushroom. were the highest in the medium of waste cotton(spinning) : corn cob(80 : 20, V/V) followed by the order of rice bran, beet pulp. Expecially, mycelial growth and density of oyster mushroom is the lowest at the mixture rate of 80% waste cotton(spinning) : 10% beet pulp. Mycelial growth and density of oyster mushroom. were the highest in the medium of cotton seed hull and beet pulp mixture followed by the order of rice bran, corn cob. Expecially, mycelial growth and density of oyster mushroom is the lowest at the mixture rate of 80% cotton seed hull : above 20% rice bran. Mycelial growth and density of oyster mushroom were the highest in the medium rate of 70% waste cotton(spinning), 10% corn cob and 10% beet pulp(V/V). Mycelial growth and density of oyster mushroom were the highest in the medium rate of 70% cotton seed hull , 10% corn cob and 10% beet pulp(V/V). Optimal concentration of NSM for the mycelial growth and density of oyster mushroom were shown to be 500 times concentration. Optimal water contents for the mycelial growth and density of NSM was 70%.
DVC(Distributed Video Coding) technique is a new paradigm, which is based on the Slepian-Wolf and Wyner-Ziv theorems. DVC offers not only flexible partitioning of the complexity between the encoder and decoder, but also robustness to channel errors due to intrinsic joint source-channel coding. Many conventional research works have been focused on the light video encoder and its rate-distortion performance improvement. However, in this paper, we propose a new DVC codec which is effectively applicable for error-prone environment. The proposed method adopts a quantiser without dead-zone and symmetric Gray code around zero value. Through computer simulations, the proposed method is evaluated by the bit errors position as well as the number of burst bit errors. Additionally, it is shown that the maximum and minimum transmission rate for the given application can be linearly determined by the number of bit errors.
The Journal of the Korea institute of electronic communication sciences
/
v.8
no.9
/
pp.1325-1332
/
2013
The first frame of a GOP, an I frame, is encoded in intra mode which generates a larger number of bits. In addition, the I frame is used for the inter mode encoding of the following frames. Thus the intial QP for the I frame affects the first frame as well as the following frames. In our previous work, we analyzed the number of bits for an I frame and showed that the ratio of the number of bits which maximizes the PSNR of a GOP maintains similar value regardless of GOP's. In this paper, we propose a R-Q model which can be used for the calculation of the initial QP given the amount of bits for an I frame. The proposed model is simple and adaptively modifies model parameters, so it can be applicable to the real-time application. It is shown by experimental results that the proposed model captures initial QP characteristics effectively and the proposed method for model parameters accurately estimates the real values.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.