• Title/Summary/Keyword: 비지도형 기계학습

Search Result 7, Processing Time 0.025 seconds

Development of an AI-based Early Warning System for Water Meter Freeze-Burst Detection Using AI Models (AI기반 물공급 시스템내 동파위험 조기경보를 위한 AI모델 개발 연구)

  • So Ryung Lee;Hyeon June Jang;Jin Wook Lee;Sung Hoon Kim
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2023.05a
    • /
    • pp.511-511
    • /
    • 2023
  • 기후변화로 동절기 기온 저하에 따른 수도계량기의 동파는 지속적으로 심화되고 있으며, 이는 계량기 교체 비용, 누수, 누수량 동결에 의한 2차 피해, 단수 등 사회적 문제를 야기한다. 이와같은 문제를 해결하고자 구조적 대책으로 개별 가정에서 동파 방지형 계량기를 설치할 수 있으나 이를 위한 비용발생이 상당하고, 비구조적 대책으로는 기상청의 동파 지도 알림 서비스를 활용하여 사전적으로 대응하고자 하나, 기상청자료는 대기 온도를 중심으로 제공하고 있기 때문에 해당서비스만으로는 계량기의 동파를 예측하는데 필요한 추가적인 다양한 변수를 활용하는데 한계가 있다. 최근 정부와 공공부문에서 22개 지역, 110개소 이상의 수도계량기함내 IoT 온도센서를 시범 설치하여 계량기 함내의 상태 등을 확인할 수 있는 사업을 수행했다. 전국적인 계량기 상태의 예측과 진단을 위해서는 추가적인 센서 설치가 필요할 것이나, IoT센서 설치 비용 등의 문제로 추가 설치가 더딘 실정이다. 본 연구에서는 겨울 동파 예방을 위해 실제 온도센서를 기반으로 가상센서를 구축하고, 이를 혼합한 하이브리드 방식으로 동파위험 기준에 따라 전국 동파위험 지도를 구축하였다. 가상센서 개발을 위해 독립변수로 위경도, 고도, 음·양지, 보온재 여부 및 기상정보(기온, 강수량, 풍속, 습도)를 활용하고, 종속변수로 실제 센서의 온도를 사용하여 기계학습 모델을 개발하였다. 지역 특성에 따라 정확한 모델을 구축하기 위해 위치정보 및 보온재여부 등의 변수를 활용하여 K-means 방법으로 군집화 하였으며, 각 군집별로 3가지의 기계학습 회귀모델을 적용하였다. 최적의 군집 수를 검토한 결과 4개가 적정한 것으로 판단되었다. 군집의 특성은 지역별 구분과 유사한 패턴을 보이며, 모든 군집에서 Gradient Boosting 회귀모델을 적용하는 것이 적합한 것으로 나타났다. 본 연구에서 개발한 모델을 바탕으로 조건에 따라 동파 예측 알람서비스에 실무적으로 활용할 수 있도록 양호·주의·위험·매우위험 총 4개의 기준을 설정하였다. 실제 본 연구에서 개발된 알고리즘을 국가상수도정보 시스템에 반영하여 테스트 수행중에 있으며, 향후 지속 검증을 할 예정에 있다. 이를 통해 동파 예방 및 피해 최소화, 물절약 등 직간접적 편익이 기대된다.

  • PDF

Development of Location Image Analysis System design using Deep Learning

  • Jang, Jin-Wook
    • Journal of the Korea Society of Computer and Information
    • /
    • v.27 no.1
    • /
    • pp.77-82
    • /
    • 2022
  • The research study was conducted for development of the advanced image analysis service system based on deep learning. CNN(Convolutional Neural Network) is built in this system to extract learning data collected from Google and Instagram. The service gets a place image of Jeju as an input and provides relevant location information of it based on its own learning data. Accuracy improvement plans are applied throughout this study. In conclusion, the implemented system shows about 79.2 of prediction accuracy. When the system has plenty of learning data, it is expected to predict various places more accurately.

Network Intrusion Detection with One Class Anomaly Detection Model based on Auto Encoder. (오토 인코더 기반의 단일 클래스 이상 탐지 모델을 통한 네트워크 침입 탐지)

  • Min, Byeoungjun;Yoo, Jihoon;Kim, Sangsoo;Shin, Dongil;Shin, Dongkyoo
    • Journal of Internet Computing and Services
    • /
    • v.22 no.1
    • /
    • pp.13-22
    • /
    • 2021
  • Recently network based attack technologies are rapidly advanced and intelligent, the limitations of existing signature-based intrusion detection systems are becoming clear. The reason is that signature-based detection methods lack generalization capabilities for new attacks such as APT attacks. To solve these problems, research on machine learning-based intrusion detection systems is being actively conducted. However, in the actual network environment, attack samples are collected very little compared to normal samples, resulting in class imbalance problems. When a supervised learning-based anomaly detection model is trained with such data, the result is biased to the normal sample. In this paper, we propose to overcome this imbalance problem through One-Class Anomaly Detection using an auto encoder. The experiment was conducted through the NSL-KDD data set and compares the performance with the supervised learning models for the performance evaluation of the proposed method.

Classification of Cancer-related Gene Expression Data Using Neural Network Classifiers (신경망 분류기를 이용한 암 관련 유전자 발현정보를 분류)

  • 권영준;류중원;조성배
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2001.04b
    • /
    • pp.295-297
    • /
    • 2001
  • 최근 생물 유전자 정보를 효과적으로 분석하기 위한 적절한 도구의 필요성이 대두되고 있다. 본 논문에서는 백혈병 환자의 골수로부터 얻어낸 DNA Microarray 유전 정보를 분류하여 환자가 가지고 있는 암의 종류를 예측하기 위한 최적의 특징추출방법과 분류 방법을 찾고자 한다. 이를 위해 피어슨 상관관계, 유클리디안 거리, 코사인 계수, 스피어맨 상관관계, 정보 이득, 상호 정보, 신호 대잡음비의 7가지 특징 추출 방법을 사용하였으며, 역전과 신경망, 의사결정 트리, 구조 적응형 자기구성 지도, $textsc{k}$-최근접 이웃 등 가지의 기계학습 분류기를 이용하여 분류 실험을 하였다. 실험결과, 피어슨 상관관계와 역전파 신경망을 이용한 분류 방법이 97.1%의 인식률을 보임을 알 수 있었다.

  • PDF

Innovation Systems for Industrial Safety in 4th Industrial Evolution (4차 산업혁명시대의 산업안전혁신시스템)

  • Suh, Yongyoon;Lee, Sanghoon
    • Proceedings of the Korea Technology Innovation Society Conference
    • /
    • 2017.11a
    • /
    • pp.1271-1276
    • /
    • 2017
  • 산업이 고도화되고 기술발전이 가속화되고 있지만, 생산현장에서의 사고와 재해는 아직까지도 지속적으로 발생하고 있다. 이는 시스템의 대규모화, 복잡화, 다양화 등에 따라 나타나는 불안전한 상태(unsafe condition)와 근로자의 안전불감증, 낮은 학습효과, 안전문화 비활성화 등을 포함하는 불안전한 행동(unsafe behavior)에 기인한다. 최근 4차 산업혁명이 대두되면서, 인간과 기계 시스템 사이의 상호작용이 활발해지고, 데이터 가용성과 알고리즘 우수성이 확보되면서, 산업현장에서도 시스템과 공정안전을 위해 최신 기술을 활용하려는 시도가 시작되고 있다. 궁극적으로는, 품질 관리, 고장분석, 작업환경관리, 보건관리 등 생산관리의 다양한 범위에 새로운 산업안전혁신을 가져올 것으로 기대된다. 본 논문에서는 사물인터넷, 드론, 인공지능 등 4차 산업혁명 시대의 하드웨어와 소프트웨어의 결합의 사례를 통해 안전한 생산현장은 물론 신뢰성할 수 있는 공공 및 사회를 위한 지능형 시스템 구축의 필요성을 제시하고자 한다.

  • PDF

스마트 메카트로닉스 창조인력양성 사업단 - 창원대학교 지방대학 특성화 사업

  • Bae, Dong-Sik
    • Ceramist
    • /
    • v.19 no.4
    • /
    • pp.74-79
    • /
    • 2016
  • 창원대학교 스마트융합 메카트로닉스 인력양성 사업단의 교육 목표는 1) 창조적 교육과정을 통한 지역거점 특성화, 2) 세계적인 수준의 경쟁력을 갖춘 기술 인력 양성, 3) 분석력, 창의력, 적응력 및 설계능력을 갖춘 능동적 기술인력 양성, 4) 시대의 환경변화를 선도하는 진취적 기술인력 양성, 5) 인재공급 및 취업률향상으로 정하였다. 이를 달성하기 위한 교육전략은 1) Major전문성(메카트로닉스심화, 공통실험교육 강화), 2) Global국제적감각(팀기반능력, 근접학문이해능력), 3) Creative지속성장 (Capstone Design, 현장적응교육)으로 정하였다. 따라서 메카트로닉스공통융합심화트랙 교육과정으로 기계, 전기전자제어, 신소재분야의 공통트랙으로 이론 30학점, 실험 6학점(16과목, 36학점)을 신설하여 운영하였다. 수강지도를 통한 교차이수권장 학생들의 자율선택기반을 조성하고, 현장적응교육, 캡스톤 디자인 2과목 7학점을 수강하도록 하였다. 학생의 본인주도 학습권을 인정하여 2학년 진학 시 학생본인직접 100% 자기 전공 선택 기회 제공하는 구조조정을 실하고, 타 전공 관련정보 상호교류, 학문간 통합교육, 조직의 유연성확보가 가능하도록 하였다. 교과목(정규/비정규)개편을 통해 개선된 현장 실무 형 내실화 교육의 실시하여 취업률을 향상시켰다. 따라서 창원대학교 신소재공학부는 기계, 전기전자에 관련된 기본소양을 의무적으로 학습하기 때문에 메카트로닉스 분야에서 필요한 신소재공학도를 육성하는 기반을 마련하였다.

Automated Vehicle Research by Recognizing Maneuvering Modes using LSTM Model (LSTM 모델 기반 주행 모드 인식을 통한 자율 주행에 관한 연구)

  • Kim, Eunhui;Oh, Alice
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.16 no.4
    • /
    • pp.153-163
    • /
    • 2017
  • This research is based on the previous research that personally preferred safe distance, rotating angle and speed are differentiated. Thus, we use machine learning model for recognizing maneuvering modes trained per personal or per similar driving pattern groups, and we evaluate automatic driving according to maneuvering modes. By utilizing driving knowledge, we subdivided 8 kinds of longitudinal modes and 4 kinds of lateral modes, and by combining the longitudinal and lateral modes, we build 21 kinds of maneuvering modes. we train the labeled data set per time stamp through RNN, LSTM and Bi-LSTM models by the trips of drivers, which are supervised deep learning models, and evaluate the maneuvering modes of automatic driving for the test data set. The evaluation dataset is aggregated of living trips of 3,000 populations by VTTI in USA for 3 years and we use 1500 trips of 22 people and training, validation and test dataset ratio is 80%, 10% and 10%, respectively. For recognizing longitudinal 8 kinds of maneuvering modes, RNN achieves better accuracy compared to LSTM, Bi-LSTM. However, Bi-LSTM improves the accuracy in recognizing 21 kinds of longitudinal and lateral maneuvering modes in comparison with RNN and LSTM as 1.54% and 0.47%, respectively.