The Journal of the Convergence on Culture Technology
/
v.9
no.6
/
pp.935-940
/
2023
Most text data collected through web scraping for artificial intelligence and big data analysis is generally large and unstructured, so a purification process is required for big data analysis. The process becomes structured data that can be analyzed through a heuristic pre-processing refining step and a post-processing machine refining step. Therefore, in this study, in the post-processing machine refining process, the Korean dictionary and the stopword dictionary are used to extract vocabularies for frequency analysis for word cloud analysis. In this process, "user-defined stopwords" are used to efficiently remove stopwords that were not removed. We propose a methodology for applying the "thesaurus" and examine the pros and cons of the proposed refining method through a case analysis using the "user-defined stop word thesaurus" technique proposed to complement the problems of the existing "stop word dictionary" method with R's word cloud technique. We present comparative verification and suggest the effectiveness of practical application of the proposed methodology.
With the development of the Internet, users share their experiences and opinions. Since related keywords are used witho0ut considering information such as the general emotion or genre of an unstructured document such as a movie review, the sensitivity accuracy according to the appropriate emotional situation is impaired. Therefore, we propose a system that predicts emotions based on information such as the genre to which the unstructured document created by users belongs or overall emotions. First, representative keyword related to emotion sets such as Joy, Anger, Fear, and Sadness are extracted from the unstructured document, and the normalized weights of the emotional feature words and information of the unstructured document are trained in a system that combines CNN and LSTM as a training set. Finally, by testing the refined words extracted through movie information, morpheme analyzer and n-gram, emoticons, and emojis, it was shown that the accuracy of emotion prediction using emotions and F-measure were improved. The proposed prediction system can predict sentiment appropriately according to the situation by avoiding the error of judging negative due to the use of sad words in sad movies and scary words in horror movies.
The Journal of the Convergence on Culture Technology
/
v.8
no.6
/
pp.891-897
/
2022
In big data analysis, raw text data mostly exists in various unstructured data forms, so it becomes a structured data form that can be analyzed only after undergoing heuristic pre-processing and computer post-processing cleansing. Therefore, in this study, unnecessary elements are purified through pre-processing of the collected raw data in order to apply the wordcloud of R program, which is one of the text data analysis techniques, and stopwords are removed in the post-processing process. Then, a case study of wordcloud analysis was conducted, which calculates the frequency of occurrence of words and expresses words with high frequency as key issues. In this study, to improve the problems of the "nested stopword source code" method, which is the existing stopword processing method, using the word cloud technique of R, we propose the use of "general stopword corpus" and "user-defined stopword corpus" and conduct case analysis. The advantages and disadvantages of the proposed "unstructured data cleansing process model" are comparatively verified and presented, and the practical application of word cloud visualization analysis using the "proposed external corpus cleansing technique" is presented.
Ye Jin Jin;Chae Yun Seo;Ji Hoon Kong;R. Young Chul Kim
The Transactions of the Korea Information Processing Society
/
v.13
no.10
/
pp.529-536
/
2024
Recent advancements in AI technology have led to its application across various fields. However, the lack of transparency in AI operations makes it challenging to guarantee the quality of its outputs. Therefore, we integrate requirements engineering in software engineering with conversational AI technology to ensure procedural fairness. Traditional requirements engineering research uses grammar-centered analysis, which often fails to fully interpret the semantic aspects of natural language. To solve this, we suggest combining Noam Chomsky's syntactic structure analysis with Charles Fillmore's semantic role theory. Additionally, we extend our previous research by analyzing adjectives in informal requirement sentence structures. This enables precise emotional analysis of the main characters in comics. Based on the results of the analysis, we apply the emotional states of the objects to the states in the UML state diagram. Then, we create the 3D object with Three.js based on the object that reflects the emotional states in the state diagram. With this approach, we expect to represent the emotional state of a 3D object.
Journal of the Earthquake Engineering Society of Korea
/
v.14
no.3
/
pp.49-57
/
2010
Most previous research on the seismic response of structures with plan irregularities have focused on the relationship between the eccentricity and the amount of torsion. This approach cannot provide the direct relationship between the irregularity and the damage. Therefore, an investigation on the relationship between the eccentricities of buildings with plan irregularities and the damage index was performed. Inelastic dynamic time-history analyses were performed on one-story buildings with various eccentricities. For the damage assessment, a 3D damage index was adopted to reflect the effect of the bi-directional response and torsion. Based on the analysis results, buildings with eccentricities of 10%, 20% and 30% will suffer 3~5%, 13~18%, and 33~47% more damage than their regular counterparts, respectively.
KIPS Transactions on Software and Data Engineering
/
v.5
no.11
/
pp.521-526
/
2016
As on-line informal text data have massive in its volume and have unstructured characteristics in nature, there are limitations in applying traditional relational data model technologies for data storage and data analysis jobs. Moreover, using dynamically generating massive social data, social user's real-time reaction analysis tasks is hard to accomplish. In the paper, to capture easily the semantics of massive and informal on-line documents with unsupervised learning mechanism, we design and implement automatic topic extraction systems according to the mass of the words that consists a document. The input data set to the proposed system are generated first, using N-gram algorithm to build multiple words to capture the meaning of the sentences precisely, and Hadoop and Spark (In-memory distributed computing framework) are adopted to run topic model. In the experiment phases, TB level input data are processed for data preprocessing and proposed topic extraction steps are applied. We conclude that the proposed system shows good performance in extracting meaningful topics in time as the intermediate results come from main memories directly instead of an HDD reading.
Journal of Information Technology and Architecture
/
v.11
no.1
/
pp.63-73
/
2014
As the advance of WWW, unstructured data including texts are taking users' interests more and more. These unstructured data created by WWW users represent users' subjective opinions thus we can get very useful information such as users' personal tastes or perspectives from them if we analyze appropriately. In this paper, we provide various analysis efficiently for unstructured text documents by taking advantage of OLAP (On-Line Analytical Processing) multidimensional cube technology. OLAP cubes have been widely used for the multidimensional analysis for structured data such as simple alphabetic and numberic data but they didn't have used for unstructured data consisting of long texts. In order to provide multidimensional analysis for unstructured text data, however, Text Cube model has been proposed precently. It incorporates term frequency and inverted index as measurements to search and analyze text databases which play key roles in information retrieval. The primary goal of this paper is to apply this text cube model to a real data set from in an Internet site sharing hotel information and to provide multidimensional analysis for users' reviews on hotels written in texts. To achieve this goal, we first build text cubes for the hotel review data. By using the text cubes, we design and implement the system which provides multidimensional keyword search features to search and to analyze review texts on various dimensions. This system will be able to help users to get valuable guest-subjective summary information easily. Furthermore, this paper evaluats the proposed systems through various experiments and it reveals the effectiveness of the system.
The Journal of The Korea Institute of Intelligent Transport Systems
/
v.16
no.6
/
pp.141-155
/
2017
As the use of SNS becomes more active, many people are posting their thoughts about specific events in their SNS in the form of text. As a result, SNS is used in various fields such as finance and distribution to conduct service satisfaction surveys and consumer monitoring. However, in the transportation area, there are not enough cases to utilize unstructured data analysis such as emotional analysis. In this study, we developed an emotional analysis methodology that can be used in transportation by using highway VOC data, which is atypical data collected by Korea Expressway Corporation. The developed methodology consists of morpheme analysis, emotional dictionary construction, and emotional discrimination of the collected unstructured data. The developed methodology was verified using highway related tweet data. As a result of the analysis, it can be guessed that many information and information about the construction and the accident were related to the highway during the analysis period. Also, it seems that users complain about the delay caused by construction and accident.
Journal of Korea Society of Industrial Information Systems
/
v.20
no.2
/
pp.113-124
/
2015
Unlike structured data which are gathered and saved in a predefined structure, unstructured text data which are mostly written in natural language have larger applications recently due to the emergence of web 2.0. Text mining is one of the most important big data analysis techniques that extracts meaningful information in the text because it has not only increased in the amount of text data but also human being's emotion is expressed directly. In this study, we used R program, an open source software for statistical analysis, and studied algorithm implementation to conduct analyses (such as Frequency Analysis, Cluster Analysis, Word Cloud, Social Network Analysis). Especially, to focus on our research scope, we used keyword extract method based on a Data Dictionary. By applying in real cases, we could find that R is very useful as a statistical analysis software working on variety of OS and with other languages interface.
Proceedings of the Korean Information Science Society Conference
/
2012.06b
/
pp.13-15
/
2012
최근 모바일 인터넷과 소셜미디어 등장으로 데이터가 폭발적으로 증가하고 있으며, 이를 활용하여 정치 사회 경제 등 제반 이슈와 연계된 분석 예측의 중요성이 날로 증가하고 있다. 특히 모바일 기기의 이동성 위치기반 실시간 등의 특징은 재난안전 관리에 유용한 수단이 되고 있으며, 재난발생시 비상정보 획득 및 공유의 매체로 활용되고 있다. 본 논문은 인터넷에 존재하는 재난관련 언론보도, 민원, 제보 등의 비정형 데이터를 분석하여 재난전조(前兆)를 사전에 파악하고 위험요소를 제거하는 체계에 대해 소개하고 이 체계를 효과적으로 운영하기 위해 도입되어야 할 정보기술과 발전방안을 제안한다.
이메일무단수집거부
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.