• Title/Summary/Keyword: 비정형분석

Search Result 484, Processing Time 0.032 seconds

ECG Arrhythmia Classification System by Supervised Learning (지도학습을 통한 심전도 부정맥 분류 시스템)

  • Jeon, Eun-Kwang;Han, Sang-Wook;Lee, HwaMin;Nam, Yun-Yeong
    • Annual Conference of KIPS
    • /
    • 2016.04a
    • /
    • pp.649-652
    • /
    • 2016
  • 빅데이터 시대와 다양한 웨어러블 디바이스의 등장으로 사용자로부터 다양한 비정형 데이터를 수집할 수 있고 분석을 통해 정보를 제공하는 연구가 증가하고 있다. 본 논문에서 사용한 nymi 밴드를 통해 사용자의 ECG 신호에 대한 수집이 가능해졌고 수집된 데이터를 이용하여 부정맥과 관련된 데이터 분석이 가능해 졌다. 지도 학습의 방법중 하나인 분류 기법을 사용하여 수집 되는 ECG 신호 데이터에 대한 부정맥 질병을 판단할 수 있는 시스템을 제안한다.

Designing an automated system to grasp the reliability of online educators through review analysis (리뷰분석을 통한 온라인교육자 신뢰도 파악 자동화 시스템 설계)

  • Lee, Ki-Hoon;Moon, Nammee
    • Annual Conference of KIPS
    • /
    • 2018.10a
    • /
    • pp.596-598
    • /
    • 2018
  • 본 논문은 온라인 교육매칭 플랫폼의 교육자에 대한 신뢰도 파악을 위한 리뷰분석 자동화 시스템을 설계한 논문이다. 웹 크롤링을 통해 비정형 데이터인 교육자에 대한 리뷰를 수집 및 파싱을 통해 데이터 베이스화 한다. 수집한 리뷰 데이터와 SO-PMI를 이용해 온라인 교육자 신뢰도 파악을 위한 맞춤형 감성사전을 구축하고자 한다. 구축한 감성사전을 이용해 리뷰를 수치화해 교육자와 피교육자 매칭 시신뢰성 향상에 도움을 주고자 한다.

The Plan of Sensing of Disaster Signs Analyzing Big Data (빅데이터를 활용한 재난전조감지 방안)

  • Choi, Seon-Hwa;Choi, Seung-Young
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2012.05a
    • /
    • pp.801-801
    • /
    • 2012
  • 최근 과학 IT 패러다임은 기존 하드웨어, 소프트웨어 중심에서 폭발적으로 증가하는 데이터를 활용하여 정치 사회 경제 등 제반 이슈와 연계된 분석 예측으로 진화하고 있으며, 모바일 인터넷과 소셜 미디어 등장으로 데이터가 경제적 자산이 되는 빅데이터 시대가 도래하였다. 급속히 변화하고 복잡해진 사회구조와 재난환경으로 인해 인력에만 의존한 재난관리의 사각지대가 대형재난으로 이어질 우려가 크므로 다양한 재난전조(前兆)를 체계적으로 관리하여 선제적으로 예방하는 체계가 필요하다. 본 연구는 인터넷에 존재하는 재난관련 언론보도, 민원, 제보, 소셜 미디어 등의 비정형 데이터와 재난관련 정형 데이터(DB)를 융합 분석하여 재난전조를 사전에 감지하고 위험요소를 신속히 제거하는 빅데이터 기반 재난전조감지 체계를 제안한다. 최근 피해가 급증하고 있는 도시내수침수 피해 위험 예방을 위해 제안한 재난전조감지 체계를 적용하여 피해발생 위험요소 및 전조, 긴급 이슈 등을 감지하는데 활용하는 방안을 제안한다. 이는 전조를 감지하고 사전 침수 피해를 예측하여 피해 최소화 및 복구비용 절감, 저감능력 강화의 효과뿐만 아니라 위험요인 사전 차단 및 확산방지가 가능할 것으로 기대된다.

  • PDF

DOCST: Document frequency Oriented Clustering for Short Texts (가중치를 이용한 효과적인 항공 단문 군집 방법)

  • Kim, Jooyoung;Lee, Jimin;An, Soonhong;Lee, Hoonsuk
    • Annual Conference of KIPS
    • /
    • 2018.05a
    • /
    • pp.331-334
    • /
    • 2018
  • 비정형 데이터의 대표적인 형태 중 하나인 텍스트 데이터 기계학습은 다양한 산업군에서 활용되고 있다. NOTAM 은 하루에 수 천개씩 생성되는 항공전문으로써 현재는 사람의 수작업으로 분석하고 있다. 기계학습을 통해 업무 효율성을 기대할 수 있는 반면, 축약어가 혼재된 단문이라는 데이터의 특성상 일반적인 분석에 어려움이 있다. 본 연구에서는, 데이터의 크기가 크지 않고, 축약어가 혼재되어 있으며, 문장의 길이가 매우 짧은 문서들을 군집화하는 방법을 제안한다. 주제를 기준으로 문서를 분류하는 LDA 와, 단어를 k 차원의 벡터공간에 표현하는 Word2Vec 를 활용하여 잡음이 포함된 단문 데이터에서도 효율적으로 문서를 군집화 할 수 있다.

An Analysis of School Life Sensibility of Students at Korea National College of Agriculture and Fisheries Using Unstructured Data Mining(1) (비정형 데이터 마이닝을 활용한 한국농수산대학 재학생의 학교생활 감성 분석(1))

  • Joo, J.S.;Lee, S.Y.;Kim, J.S.;Song, C.Y.;Shin, Y.K.;Park, N.B.
    • Journal of Practical Agriculture & Fisheries Research
    • /
    • v.21 no.1
    • /
    • pp.99-114
    • /
    • 2019
  • In this study we examined the preferences of eight college living factors for students at Korea National College of Agriculture and Fisheries(KNCAF). Analytical techniques of unstructured data used opinion mining and text mining techniques, and the analysis results of text mining were visualized as word cloud. The college life factors included eight topics that were closely related to students: 'my present', 'my 10 years later', 'friendship', 'college festival', 'student restaurant', 'college dormitory', 'KNCAF', and 'long-term field practice'. In the text submitted by the students, we have established a dictionary of positive words and negative words to evaluate the preference by classifying the emotions of positive and negative. As a result, KNCAF students showed more than 85% positive emotions about the theme of 'student restaurant' and 'friendship'. But students' positive feelings about 'long-term field practice' and 'college dormitory' showed the lowest satisfaction rate of not exceeding 60%. The rest of the topics showed satisfaction of 69.3~74.2%. The gender differences showed that the positive emotions of male students were high in the topics of 'my present', 'my 10 years later', 'friendship', 'college dormitory' and 'long-term field practice'. And those of female were high in 'college festival', 'student restaurant' and 'KNCAF'. In addition, using text mining technique, the main words of positive and negative words were extracted, and word cloud was created to visualize the results.

Business Innovation Through Spatial Data Analysis: A Multi-Case Analysis (공간 데이터 분석 기반의 비즈니스의 혁신: 해외 사례 분석을 중심으로)

  • Ham, YuKun
    • The Journal of Bigdata
    • /
    • v.4 no.1
    • /
    • pp.83-97
    • /
    • 2019
  • With sensor and communication technology development, spatial data related to business activities is exploding. Spatial data is now evolving into atypical data about space over three dimensions, away from two-dimensional geographic data. In addition to the Fourth Industrial Revolution, which connects the virtual space with the real space, there is a great opportunity for companies to utilize it. The analysis of recent overseas cases shows that it is possible to analyze customized services by understanding the situation of customers and objects located in the space, to manage risk, and furthermore to innovate business processes by analyzing spatial data. In the future, business innovation that combines spatial data from various sources and real-time analysis of relationships and situations between people and objects in space is expected to expand in all business fields.

  • PDF

Design of a Sentiment Analysis System to Prevent School Violence and Student's Suicide (학교폭력과 자살사고를 예방하기 위한 감성분석 시스템의 설계)

  • Kim, YoungTaek
    • The Journal of Korean Association of Computer Education
    • /
    • v.17 no.6
    • /
    • pp.115-122
    • /
    • 2014
  • One of the problems with current youth generations is increasing rate of violence and suicide in their school lives, and this study aims at the design of a sentiment analysis system to prevent suicide by uising big data process. The main issues of the design are economical implementation, easy and fast processing for the users, so, the open source Hadoop system with MapReduce algorithm is used on the HDFS(Hadoop Distributed File System) for the experimentation. This study uses word count method to do the sentiment analysis with informal data on some sns communications concerning a kinds of violent words, in terms of text mining to avoid some expensive and complex statistical analysis methods.

  • PDF

A study on integration of semantic topic based Knowledge model (의미적 토픽 기반 지식모델의 통합에 관한 연구)

  • Chun, Seung-Su;Lee, Sang-Jin;Bae, Sang-Tea
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2012.06b
    • /
    • pp.181-183
    • /
    • 2012
  • 최근 자연어 및 정형언어 처리, 인공지능 알고리즘 등을 활용한 효율적인 의미 기반 지식모델의 생성과 분석 방법이 제시되고 있다. 이러한 의미 기반 지식모델은 효율적 의사결정트리(Decision Making Tree)와 특정 상황에 대한 체계적인 문제해결(Problem Solving) 경로 분석에 활용된다. 특히 다양한 복잡계 및 사회 연계망 분석에 있어 정적 지표 생성과 회귀 분석, 행위적 모델을 통한 추이분석, 거시예측을 지원하는 모의실험(Simulation) 모형의 기반이 된다. 본 연구에서는 이러한 의미 기반 지식모델을 통합에 있어 텍스트 마이닝을 통해 도출된 토픽(Topic) 모델 간 통합 방법과 정형적 알고리즘을 제시한다. 이를 위해 먼저, 텍스트 마이닝을 통해 도출되는 키워드 맵을 동치적 지식맵으로 변환하고 이를 의미적 지식모델로 통합하는 방법을 설명한다. 또한 키워드 맵으로부터 유의미한 토픽 맵을 투영하는 방법과 의미적 동치 모델을 유도하는 알고리즘을 제안한다. 통합된 의미 기반 지식모델은 토픽 간의 구조적 규칙과 정도 중심성, 근접 중심성, 매개 중심성 등 관계적 의미분석이 가능하며 대규모 비정형 문서의 의미 분석과 활용에 실질적인 기반 연구가 될 수 있다.

A Meta-Analysis of External Factors on Perceived Value in E-commerce (전자상거래 연구에서 인지된 가치의 선행 요인에 관한 메타분석)

  • Nam, Soo-Tai;Jin, Chan-Yong
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2016.05a
    • /
    • pp.112-114
    • /
    • 2016
  • Big data analysis refers the ability to store, manage and analyze collected data from an existing database management tool. Meta-analysis refers to a statistical literature synthesis method from the quantitative results of many known empirical studies. We conducted a meta-analysis and review of between external factors on perceived value in e-commerce researches. This study focused a total of 11 research papers that established causal relationships between external factors on perceived value in e-commerce published in Korea academic journals during 2000 and 2016. Based on these findings, several theoretical and practical implications were suggested and discussed with the difference from previous researches.

  • PDF

A Insight Study on Keyword of 4th Industrial Revolution Utilizing Big Data (빅데이터 분석을 활용한 4차 산업혁명 키워드에 대한 통찰)

  • Nam, Soo-Tai;Jin, Chan-Yong
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2017.05a
    • /
    • pp.153-155
    • /
    • 2017
  • 빅데이터 분석은 데이터베이스에 잘 정리된 정형 데이터뿐 아니라 인터넷, 소셜 네트워크 서비스, 모바일 환경에서 생성되는 웹 문서, 이메일, 소셜 데이터 등 비정형 데이터를 효과적으로 분석하는 기술을 말한다. 대부분의 빅데이터 분석 기술 방법들은 기존 통계학과 전산학에서 사용되던 데이터 마이닝, 기계 학습, 자연 언어 처리, 패턴 인식 등이 이에 해당된다. 글로벌 리서치 기관들은 빅데이터를 2011년 이래로 최근 가장 주목받는 신기술로 지목해오고 있다. 따라서 대부분의 산업에서 기업들은 빅데이터의 적용을 통해 가치 창출을 위한 노력을 기하고 있다. 본 연구에서는 다음 커뮤니케이션의 빅데이터 분석도구인 소셜 매트릭스를 활용하여 2017년 5월, 1개월 시점을 설정하고 "4차 산업혁명" 키워드에 대한 소비자들의 인식들을 살펴보았다. 빅데이터 분석의 결과는 다음과 같다. 첫째, 4차 산업혁명 키워드에 대한 연관 검색어 1위는 "후보"가 빈도수(7,613)인 것으로 나타났다. 둘째, 연관 검색어 2위는 "안철수"가 빈도수(7,297), 3위는 "문재인"이 빈도수(5,183)로 각각 나타났다. 다음으로 "4차 산업혁명" 키워드에 대한 검색어 긍정적 여론 빈도수 1위는 새로운(895)으로 나타났고, 부정적 여론 빈도수 1위는 위기(516)가 차지하였다. 이러한 결과 분석결과를 바탕으로 연구의 한계와 시사점을 제시하고자 한다.

  • PDF