• Title/Summary/Keyword: 비정형분석

Search Result 484, Processing Time 0.026 seconds

Bench Scale급 석탄가스화기 Slag의 거동

  • 정봉진;이중용;이계봉;윤용승
    • Proceedings of the Korea Society for Energy Engineering kosee Conference
    • /
    • 1997.10a
    • /
    • pp.59-65
    • /
    • 1997
  • Bench Scale급 석탄가스화기에서 배출된 slag의 거동을 살펴보기 위해서 Drayton탄(호주)과 Kideco탄(인도네시아)으로부터 생성된 slag의 조성, 형상, 잔존탄소함량 및 중금속 성분들을 분석하였다. Drayton탄 slag는 표면이 매끄럽고 다공성을 띄며 crack이 거의 없었고 결정구조가 비정형(amorphous)인 반면에, KIDECO탄 slag의 경우는 표면이 거칠고 crack이 상당히 많이 존재하는 것으로 나타났다. Slag중에 함유된 잔존탄소함량은 두 대상탄 모두 1% 이하를 보임으로써 slag의 재활용 기준인 3%를 만족하였다. Slag 재활용시 중금속의 2차적인 환경오염을 우려하여 석탄중에 포함된 중금속 함량 분석결과 대부분의 중금속이 slag중에 용융되어 안정한 화합물로 존재하고 있었으며, slag의 용출수 분석결과 중금속으로 인한 2차 환경오염 문제는 없을 것으로 판단된다.

  • PDF

Criminal Profiling Using Hierarchical Clustering of Unstructured Data (비정형 데이터의 계층적 군집화를 이용한 범죄 프로파일링)

  • Kim, YongHoon;Chung, Mokdong
    • Annual Conference of KIPS
    • /
    • 2016.04a
    • /
    • pp.335-338
    • /
    • 2016
  • 최근 디지털 정보들은 각종 매체에 저장되어 다양하게 활용되고 있다. 그 중 범죄관련 비정형데이터의 분석과 활용은 범죄수사에 유용한 자료로 활용될 수 있다. 그러나 기존의 범죄통계 자료의 분석 및 활용은 정형데이터를 이용한 제한적 접근에 그치고 있다. 따라서, 본 논문은 수사 자료 중 처리되지 못한 비정형데이터를 분석, 저장, 처리하여, 수사 자료로 활용할 수 있도록 정형데이터화 함으로 범죄 프로파일링에 도움이 될 것으로 기대된다.

Estimating the Sentiment Value of a Word using Korean Dictionary Definitions and Synonyms (한국어 사전 뜻풀이와 유의어를 이용한 단어의 감성수치 추정 방법)

  • Park, Hae-Jin;Lee, Soowon
    • Annual Conference of KIPS
    • /
    • 2014.11a
    • /
    • pp.861-864
    • /
    • 2014
  • 비정형 데이터에 대한 분석이 활발해짐에 따라 감성분석 기술에 대한 관심이 높아지고 있다. 대부분의 감성분석 연구는 감성단어를 긍정, 중립, 부정의 세 가지로 분류하여 감성사전을 구축하고 있다. 최근 다양한 감성으로 분류하려는 시도가 있지만, 단어의 감성 정도를 정량화하는 연구는 극히 드물고 자동으로 정량화하지 못하고 있다. 본 논문에서는 한국어 감성사전을 자동 구축하기 위하여 한국어 사전 뜻풀이와 유의어를 이용하여 단어의 감성수치를 자동으로 추정하는 방법을 제안한다. 제안방법은 현재 SNS에서 많이 사용되는 감성단어의 감성수치를 추정하여 감성사전을 확장할 수 있고, 단어의 품사에 상관없이 감성수치를 추정할 수 있다는 장점을 가진다.

A Study on Analysis of Characteristic Information of Distorted Image for Assessment of No-Reference Image Quality (무 참조 영상 품질 평가를 위한 왜곡 영상의 특징 정보 분석 연구)

  • Shin, Do-Kyung;Kim, Jae-Kyung
    • Proceedings of the Korean Society of Broadcast Engineers Conference
    • /
    • 2021.06a
    • /
    • pp.343-344
    • /
    • 2021
  • 최근 영상의 활용도의 증가에 따라, 비정형 영상 데이터에 대한 양이 기하급수적으로 증가하였다. 디지털 영상을 획득할 시에 처리/압축/저장/전송/재생산 등의 과정을 거치면서 왜곡을 수반하게 되며 영상의 품질을 저하시키는 요인이 된다. 영상의 품질은 활용 결과에도 큰 영향을 미치기 때문에 품질이 저하된 영상은 분류를 하는 것이 중요하다. 하지만 사람이 수신된 모든 영상에 대해서 직접 분류를 하는 것은 많은 시간과 비용이 소요된다는 문제점이 존재한다. 따라서 본 논문에서는 사람이 인지하는 주관적인 영상 품질 평가와 유사하게 품질에 대한 평가를 위한 왜곡영상의 특징정보를 검출 및 분석하는 방안에 대해서 제안한다. 본 방법은 사람이 영상을 인지할 때 가장 많이 사용되는 요소인 색상에 대한 선명도, 블러와 노이즈에 대한 특징정보를 이용한다. 검출된 특징정보를 공간 도메인으로 변환함으로써 왜곡 영상별 특성을 분석하였다. 실험을 위해서 IQA 데이터베이스인 LIVE를 이용하였으며, 원본영상 및 5가지 유형의 왜곡영상으로 구성되어 있다. 실험결과 품질이 좋은 영상과 왜곡영상에 대한 특성을 검출할 수 있었다.

  • PDF

Investigations on Techniques and Applications of Text Analytics (텍스트 분석 기술 및 활용 동향)

  • Kim, Namgyu;Lee, Donghoon;Choi, Hochang;Wong, William Xiu Shun
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.42 no.2
    • /
    • pp.471-492
    • /
    • 2017
  • The demand and interest in big data analytics are increasing rapidly. The concepts around big data include not only existing structured data, but also various kinds of unstructured data such as text, images, videos, and logs. Among the various types of unstructured data, text data have gained particular attention because it is the most representative method to describe and deliver information. Text analysis is generally performed in the following order: document collection, parsing and filtering, structuring, frequency analysis, and similarity analysis. The results of the analysis can be displayed through word cloud, word network, topic modeling, document classification, and semantic analysis. Notably, there is an increasing demand to identify trending topics from the rapidly increasing text data generated through various social media. Thus, research on and applications of topic modeling have been actively carried out in various fields since topic modeling is able to extract the core topics from a huge amount of unstructured text documents and provide the document groups for each different topic. In this paper, we review the major techniques and research trends of text analysis. Further, we also introduce some cases of applications that solve the problems in various fields by using topic modeling.

Examining Economic Activities of Disabled People Using Media Big Data: Temporal Trends and Implications for Issue Detection (언론 빅데이터를 이용한 장애인 경제활동 분석: 키워드의 시기별 동향과 이슈 탐지를 위한 시사점)

  • Won, Dong Sub;Park, Han Woo
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.22 no.2
    • /
    • pp.548-557
    • /
    • 2021
  • The purpose of this study was to determine the statistical usefulness of using atypical text data collected from media that are easy to collect to overcoming limits of the existing data related to economic activities of disabled people. In addition, by performing semantic network analysis, major issues by period that could not be grasped by statistical analysis were also identified. As a result, semantic network analysis revealed that the initiative of the public sector, such as the central and local government bodies, was strongly shown. On the other hand, in the private purchase sector, it was also possible to confirm the consumption revitalization trend and changes in production activities in the recent issue of Covid-19. While the term "priority purchase" had a statistically significant relation with the other two terms "vocational rehabilitation" and "employment for the disabled". For the regression results, while the term "priority purchase" had a statistically significant association with the other two terms "vocational rehabilitation" and "employment for the disabled". Further, some statistical analyses reveal that keyword data taken from media channels can serve as an alternative indicator. Implications for issue detection in the field of welfare economy for the disabled is also discussed.

A Study on the Perception of Quality of Care Services by Care Workers using Big Data (빅데이터를 활용한 요양보호사의 서비스질 인식에 관한 연구)

  • Han-A Cho
    • Journal of Korean Dental Hygiene Science
    • /
    • v.6 no.1
    • /
    • pp.13-25
    • /
    • 2023
  • Background: This study was conducted to confirm the service quality management of care workers, who are direct service personnel of long-term care insurance for the elderly, using unstructured big data. Methods: Using a textome, this study collected and analyzed unstructured social data related to care workers' service quality. Frequency, TF-IDF, centrality, semantic network, and CONCOR analyses were conducted on the top 50 keywords collected by crawling the data. Results: As a result of frequency analysis, the top-ranked keywords were 'Long-term care services,' 'Care workers,' 'Quality of care services,' 'Long term care,' 'Long term care facilities,' 'Enhancement,' 'Elderly,' 'Treatment,' 'Improvement,' and 'Necessity.' The results of degree centrality and eigenvector centrality were almost the same as those of the frequency analysis. As a result of the CONCOR analysis, it was found that the improvement in the quality of long-term care services, the operation of the long-term care services, the long-term care services system, and the perception of the psychological aspects of the care workers were of high concern. Conclusion: This study contributes to setting various directions for improving the service quality of care workers by presenting perceptions related to the service quality of care workers as a meaningful group.

Research Trends in Record Management Using Unstructured Text Data Analysis (비정형 텍스트 데이터 분석을 활용한 기록관리 분야 연구동향)

  • Deokyong Hong;Junseok Heo
    • Journal of Korean Society of Archives and Records Management
    • /
    • v.23 no.4
    • /
    • pp.73-89
    • /
    • 2023
  • This study aims to analyze the frequency of keywords used in Korean abstracts, which are unstructured text data in the domestic record management research field, using text mining techniques to identify domestic record management research trends through distance analysis between keywords. To this end, 1,157 keywords of 77,578 journals were visualized by extracting 1,157 articles from 7 journal types (28 types) searched by major category (complex study) and middle category (literature informatics) from the institutional statistics (registered site, candidate site) of the Korean Citation Index (KCI). Analysis of t-Distributed Stochastic Neighbor Embedding (t-SNE) and Scattertext using Word2vec was performed. As a result of the analysis, first, it was confirmed that keywords such as "record management" (889 times), "analysis" (888 times), "archive" (742 times), "record" (562 times), and "utilization" (449 times) were treated as significant topics by researchers. Second, Word2vec analysis generated vector representations between keywords, and similarity distances were investigated and visualized using t-SNE and Scattertext. In the visualization results, the research area for record management was divided into two groups, with keywords such as "archiving," "national record management," "standardization," "official documents," and "record management systems" occurring frequently in the first group (past). On the other hand, keywords such as "community," "data," "record information service," "online," and "digital archives" in the second group (current) were garnering substantial focus.

A Study on Patent Data Analysis and Competitive Advantage Strategy using TF-IDF and Network Analysis (TF-IDF와 네트워크분석을 이용한 특허 데이터 분석과 경쟁우위 전략수립에 관한 연구)

  • Yun, Seok-Yong;Han, Kyeong-Seok
    • Journal of Digital Contents Society
    • /
    • v.19 no.3
    • /
    • pp.529-535
    • /
    • 2018
  • Data is explosively growing, but many companies are still using data analysis only for descriptive analysis or diagnostic analysis, and not appropriately for predictive analysis or enterprise technology strategy analysis. In this study, we analyze the structured & unstructured patent data such as IPC code, inventor, filing date and so on by using big data analysis techniques such as network analysis and TF-IDF. Through this analysis, we propose analysis process to understand the core technology and technology distribution of competitors and prove it through data analysis.

An Empirical Study on the Factors Influencing the Use of BLOG and Job Satisfaction (업무특성에 따른 블로그 사용의도와 업무만족에 관한 연구)

  • Yang, Hee-Dong;Kim, Hye-Jung;Kang, So-Ra
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.10 no.12
    • /
    • pp.3824-3832
    • /
    • 2009
  • Would it be true that cutting off using BLOG in business hour prevents that job performance decreases? Even though it is right, would the worker have different reason of using BLOG according to job characteristic? This is the purpose of this study to search the answers for the questions above. Under the first hypothesis, (factors having the people use BLOG can influence the job satisfaction), independent variable was set to three factors and define as 'Interoperability', 'Informative', 'Amusement' respectively and dependent variable was set to job satisfaction in this study. The result of analyzing this hypothesis was that two factors('Interoperability', 'Informative') haveinfluence on job satisfaction but 'Amusement' factor hadn't any influence on job satisfaction. For another hypothesis, (the factor having the worker use BLOG would have different influence on job satisfaction according to job characteristic), Job characteristic was set to 3 group (fixed/unfixed, individual/co-operational, static/active) in this study and these variables were converted to dummy variable for validating the moderating effect on both variables(independent/dependent). The result of analyzing this hypothesis was that all dummy variables set to 3 groupshadn't any moderating effect on both variables. Because a dummy variable couldn't be contained the job characteristic exactly.