DOI QR코드

DOI QR Code

A Study on Patent Data Analysis and Competitive Advantage Strategy using TF-IDF and Network Analysis

TF-IDF와 네트워크분석을 이용한 특허 데이터 분석과 경쟁우위 전략수립에 관한 연구

  • Yun, Seok-Yong (Dept. of IT Policy Management, Graduate School, Soong-sil University) ;
  • Han, Kyeong-Seok (School of Business Administration, Soong-sil University)
  • 윤석용 (숭실대학교 IT정책경영학과) ;
  • 한경석 (숭실대학교 경영학부 경영정보시스템)
  • Received : 2018.03.22
  • Accepted : 2018.03.29
  • Published : 2018.03.31

Abstract

Data is explosively growing, but many companies are still using data analysis only for descriptive analysis or diagnostic analysis, and not appropriately for predictive analysis or enterprise technology strategy analysis. In this study, we analyze the structured & unstructured patent data such as IPC code, inventor, filing date and so on by using big data analysis techniques such as network analysis and TF-IDF. Through this analysis, we propose analysis process to understand the core technology and technology distribution of competitors and prove it through data analysis.

데이터는 폭발적으로 증가하고 있으나 아직도 많은 기업이 데이터 분석을 현황 설명(descriptive analysis)이나 진단 분석(diagnostic analysis)에만 활용하고 예측분석(predictive analysis)이나 기업의 기술전략 분석 등에는 적절하게 활용하고 있지 못하다. 본 연구는 오픈 되어 있는 특허의 IPC 코드, 발명자, 출원일 등의 정형데이터와 청구항 등의 비정형 데이터를 네트워크분석, TF-IDF 등의 빅데이터 분석기법을 활용하여 경쟁기업의 확보 기술과 핵심 기술의 분포, 해외 진출 전략을 파악하기 위한 분석 프로세스를 제시하고 이를 데이터 분석을 통하여 증명하고자 한다.

Keywords

References

  1. S.Y.Park and H.W.Park. "The Relationship between Technology Innovation and Firm Performance of Korean Companies based on Patent Analysis". Korea technology innovation society. Vol. 9, No. 1, pp. 1-25, 2006.
  2. J, B, Woo and Y, M, Jung, "Analysis of Factors Influencing Patent Citations", Korea Society for information management Vol. 27 No. 1, pp.103-118 2010.
  3. S. H. Jun "Technology Forecasting of intelligent systems using patent analysis", Korea intelligent information system society, Vol 21, No. 1, pp.100-105, 2011. https://doi.org/10.5391/JKIIS.2011.21.1.100
  4. H. J. Kang, "Study on the Projection of the Promising Fusion Technologies by US Patent Analysis", KOSIME, Vol. 14 No. 3 pp. 111-115. 2007.
  5. S, H, Jun, S, S, Park,, " Forecasting Vacant Technology of Patent Analysis System using Self Organizing Map and Matrix Analysis", KOCON Vol. 10 No. 2, pp. 462-480, 2010.
  6. J, H, Choi, H, S, Kim " Keyword Network Analysis for Technology Forecasting", KIISS, Vol. 17 No. 4, pp.227-240 2011.
  7. C, H, Kim, "Identifying the linkage between technologies using co-classification analysis", KIOIE Vol. 2006, No. 11, pp. 711-717, 2006.
  8. G. J. Gwon, "The determinants of technology innovation in ICT firms", KIAA Vol. 28, pp. 139-157, 2009.
  9. W. J. Kim, "Network Centricity Theory", Koos Book, Vol. 111, No. 23, pp. 109-111, 2015.
  10. Ministry of Internal Affairs and Communications(2012), Japan, "Information Communication White Paper"
  11. Max H. Boisot, Ian C. MacMillan, Kyeong Seok Han. "Explorations in Information Space", Oxford University, Vol. 228, No. 24, 2007
  12. Jun Sunghae, "A Big Data Learning for Patent Analysis", Journal of Korean Institute of Intelligent System Vol23, No. 5, 2013.
  13. Gerard Salton, "Term-weighting approaches in automatic text retrieval", Information Processing & Management Vol24 No. 5 1988.
  14. "Guide to the International Patent Classification", WIPO, 2017
  15. The Economist, https://www.economist.com/news/leaders/21721656-data-economy-demands-new-approachantitrust-rules-worlds-most-valuable-resource
  16. World Intellectual Property Organization, http://www.wipo.int
  17. Patent office, http://www.kipo.go.kr
  18. Patent Information Net, http://www.kipris.or.kr