최근 빌링(billing, 과금), 벤치마킹, 확장성(scalability), 통계적 목적을 위해 오픈스택 클라우드의 개별 컴포넌트를 모니터링하고 메터링하는 텔레메터링 서비스가 Ceilometer라는 코드명으로 정식 프로젝트로 추가되었다. 초기의 빌링만을 위해 필수 요소만 모니터링하는 것에서, 상태를 감시하여 클라우드 자원의 오토스케일링 등의 오케스트레이션 기능을 위한 다목적성으로 발전하고 있다. 특히 이것은 빅데이터 등의 데이터 분석에 있어서 중요한 힌트를 제공해 준다. 본고는 소스분석을 통한 Ceilometer의 데이터 수집 구조, Ceilometer 모니터링의 핵심 키워드, 비정형 데이터 DB인 MongoDB, 외부인터페이스로써 API(Application Interface) 혹은 CLI(Command Line Interface) 명령어를 소개하고자 한다. 결론에서는 ceilometer의 전반적 구조에 대한 나름대로의 평가를 기술하였다.
This study confirms the polarity of news articles on apartment prices using Opinion Mining which has widely been used for a big data analysis. The analyses were carried out utilizing internet news articles posted on the Naver for two years: 2012 and 2018. We proposed a sentiment analysis model and modeled a topic-oriented sentiment dictionary construction methods. As a result of analyzing the proposed sentiment analysis model, it was confirmed that there was a difference according to the tendency of the media companies in selecting social issues at the time of rising apartment prices. At the same time, we were able to find more affirmative articles in the media companies which share similar sentiment with the government in charge. In this paper, we proposed a sentiment analysis model that can be used in real estate field and analyzed the polarity of unformatted data related to real estate. In order to integrate them into various fields in the future, it is necessary to build the sentiment dictionaries by themes, as well as to collect various unformatted data over extended periods.
Journal of the Korea Institute of Information and Communication Engineering
/
v.22
no.8
/
pp.1049-1054
/
2018
Keyword searching used in the past as a method of finding similar patents, and automated classification by machine learning is using in recently. Keyword searching is a method of analyzing data that is formalized through data refinement. While the accuracy for short text is high, long one consisted of several words like as document that is not able to analyze the meaning contained in sentences. In semantic analysis level, the method of automatic classification is used to classify sentences composed of several words by unstructured data analysis. There was an attempt to find similar documents by combining the two methods. However, it have a problem in the algorithm w the methods of analysis are different ways to use simultaneous unstructured data and regular data. In this paper, we study the method of extracting keywords implied in the document and using the LDA(Latent Semantic Analysis) method to classify documents efficiently without human intervention and finding similar patents.
Recently, with the activation of the industry related to the big data, the global security companies have expanded their scopes from structured to unstructured data for the intelligent security threat monitoring and prevention, and they show the trend to utilize the technique of user's tendency analysis for security prevention. This is because the information scope that can be deducted from the existing structured data(Quantify existing available data) analysis is limited. This study is to utilize the analysis of security tendency(Items classified purpose distinction, positive, negative judgment, key analysis of keyword relevance) applying the machine learning algorithm($Na{\ddot{i}}ve$ Bayes, Decision Tree, K-nearest neighbor, Apriori) in the big data environment. Upon the capability analysis, it was confirmed that the security items and specific indexes for the decision of security tendency could be extracted from structured and unstructured data.
Social issues are important factors that decide government policy and newspapers are critical channels that reflect them. Analysing news articles can contribute to understanding social issues, but it is very difficult to analyse the unstructured large volumes of news data manually. Therefore, this study aims to analyze the different views among stakeholders of a specific social issue by using text analysis, word cloud analysis and associative analysis methods, which systematically transform unstructured news data into structured one. We analyzed a total of 115 news articles and a total of 6,772 comments, collected from the selected newspapers (Chosun-Il-bo, Joongang-Il-bo, Donga-Il-bo, Maeil Newspaper, Busan-Il-bo) for two weeks. We found that there are significant differences in tone between newspapers. While nation-wide daily newspapers focus on political relations with local areas, local daily newspapers tend to write articles to represent local governments' interests.
Here are background, method, scope, main contents of this research. As the interests increased in recent about the construction in complex and diverse areas, construction is locally connected to human life like to coexistence of the technology and culture. The local development should not be fragmentary construction to improve local recycling ability. Local society should be inherited by modern cultural perspective through a variety of local culture and coexistence. Effective decision making analysis is necessary to build a livable area with a combination of high-tech industry. For this reason, this paper will study the political analysis for decision making at the planning stage of construction in point of fusion of technology and culture by using unstructured data analysis. Conclusion is as in the following. Local planning stage of construction describes diverse meanings of intangible and intangible factors as political factor. Technology factors have various qualitative and quantitative factors in construction field. Understanding decision making at the planning stage of construction means not only visible 'technology factor' such as structure, method, shape, and so on, but also invisible 'culture factor' such as spirit of age, religion, learning, and life-style reflected in formation process of space, and insight of brain power about art.
Journal of the Korea Institute of Information Security & Cryptology
/
v.23
no.4
/
pp.721-728
/
2013
Big data is one of the most spotlighted technological trends in these days, enabling new methods to handle huge volume of complicated data for a broad range of applications. Real-time network traffic analysis essentially deals with big data, which is comprised of different types of log data from various sensors. To tackle this problem, in this paper, we devise a big data based platform, RENTAP, to detect and analyse malicious network traffic. Focused on military network environment such as closed network for C4I systems, leading big data based solutions are evaluated to verify which combination of the solutions is the best design for network traffic analysis platform. Based on the selected solutions, we provide detailed functional design of the suggested platform.
With the advent of the 4-th industrial revolution, manufacturing companies have increasing interests in the realization of smart manufacturing by utilizing their accumulated facilities data. However, most previous research dealt with the structured data such as sensor signals, and only a little focused on the unstructured data such as text, which actually comprises a large portion of the accumulated data. Therefore, we propose an association rule mining based facility error pattern extraction framework, where text data written by operators are analyzed. Specifically, phrases were extracted and utilized as a unit for text data analysis since a word, which normally used as a unit for text data analysis, is unable to deliver the technical meanings of facility errors. Performances of the proposed framework were evaluated by addressing a real-world case, and it is expected that the productivity of manufacturing companies will be enhanced by adopting the proposed framework.
The Journal of the Convergence on Culture Technology
/
v.7
no.4
/
pp.745-750
/
2021
In Big data visualization analysis of unstructured text data, raw data is mostly large-capacity, and analysis techniques cannot be applied without cleansing it unstructured. Therefore, from the collected raw data, unnecessary data is removed through the first heuristic cleansing process and Stopwords are removed through the second machine cleansing process. Then, the frequency of the vocabulary is calculated, visualized using the word cloud technique, and key issues are extracted and informationalized, and the results are analyzed. In this study, we propose a new Stopword cleansing technique using an external Stopword set (DB) in Python word cloud, and derive the problems and effectiveness of this technique through practical case analysis. And, through this verification result, the utility of the practical application of word cloud analysis applying the proposed cleansing technique is presented.
Despite expectations of short- or long-term positive effects of corporate social responsibility (CSR) on firm performance, the results of existing research into this relationship are inconsistent partly due to lack of clarity about subordinate CSR concepts. In this study, keywords related to CSR concepts are extracted from atypical sources, such as newspapers, using text mining techniques to examine the relationship between CSR and firm performance. The analysis is based on data from the New York Times, a major news publication, and Google Scholar. We used text analytics to process unstructured data collected from open online documents to explore the effects of CSR on short- and long-term firm performance. The results suggest that the CSR index computed using the proposed text - online media - analytics predicts long-term performance very well compared to short-term performance in the absence of any internal firm reports or CSR institute reports. Our study demonstrates the text analytics are useful for evaluating CSR performance with respect to convenience and cost effectiveness.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.