• Title/Summary/Keyword: 비점오염물질 관리

Search Result 267, Processing Time 0.025 seconds

Removal Mechanisms for Water Pollutant in Constructed Wetlands: Review Paper (인공습지에서 오염물질 제거기작 및 국내외 연구동향)

  • Ko, Dae-Hyun;Chung, Yun-Chul;Seo, Seong-Cheol
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.32 no.4
    • /
    • pp.379-392
    • /
    • 2010
  • In these days, constructed wetlands are applied in Korea for various purposes ; post-treatment of effluent in wastewater treatment, management of stormwater and restoration of aquatic ecosystems. However, the removal mechanisms for water pollutant in constructed wetlands are not clearly understood because they are affected by climate, influent characteristics and local constraints. Therefore, this paper is focused on the process that the pollutant, especially nitrogen and phosphorus, of the wetland is removed by. In this study, the main nitrogen removal is performed by nitrification/denitrification mechanism in the rhizosphere of constructed wetlands. And the majority of the phosphorus is removed by adsorption on the substrate of wetland. However the fate of phosphorus in wetlands can be diverse depending on the Oxidation Reduction Potential(ORP), adsorption/desorption, precipitation/dissolution, microbial effect, etc.

Analysis of Non-Point Source Pollution Discharge Characteristics in Leisure Facilities Areas for Pattern Classification (패턴분류를 위한 위락시설지역의 비점오염원 유출특성분석)

  • Kim, Yong-Gu;Jin, Young-Hoon;Park, Sung-Chun;Kim, Jung-Min
    • Journal of Korea Water Resources Association
    • /
    • v.43 no.12
    • /
    • pp.1029-1038
    • /
    • 2010
  • In meteorology Korea has 2/3 of rain of annual total rainfall at the month of Jun through Sept and it has possibility to have serious flood damage because geographically it is composed of mountainous area with steep slope which account for 70% of its country. Also, the increase of impervious layer due to industrialization and urbanization causes direct runoff, which deteriorates contamination of rivers by moving the contaminated material on the surface at the beginning of rain. In particular, the area of leisure facilities needs the management of water quality absolutely because dense population requires space of park function and place to relax and increases moving capability of non-point pollution source. For disposition of rainfall & runoff, the standard of initial rainfall, which is to be used for the computation of disposition volume, is significant factors for the runoff study of non-point pollution source, Until now, a great deal of study has been done by many researchers. However, it is the current reality that the characteristics of runoff varies according to land protection comprising river basin and the standard of initial rainfall by each researcher is not clearly defined yet. Therefore, in this research, it is suggested that, with the introduction of SOM (Self-Organizing Map), the standard of initial rainfall be determined after analyzing each sectional data by executing pattern classification about runoff and water quality data measured at the test river basin for this research.

Assessment of Permissible Inflow Load for Water Quality Management in Yeoja Bay, Korea (여자만의 수질관리를 위한 허용유입부하량 산정)

  • Kim, Hyung-Chul;Lee, Won-Chan;Kim, Jong-Gu;Hong, Sok-Jin;Kim, Kyoung-Mi;Cho, Yoon-Sik;Park, Sung-Eun;Kim, Jin-Ho
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.17 no.4
    • /
    • pp.345-356
    • /
    • 2011
  • Based on the consideration of land based pollutant discharges from the basin and seawater quality related carrying capacity and the seawater quality improvement in receiving water bodies of Yeoja Bay where eutrophication and organic pollution are in progress, were evaluated. The permissible inflow loads of BOD, TN and TP by using the geographical features and box modelling method were estimated. As results, it is shown that the reduction rate of discharged BOD and TP loads were 39.3% and 30.8 %, respectively, however, 6.9% was estimated for TN. According to the pollutant loading in each tributary and generated load of the basin, it is given much weight on the land use group, and also was shown in discharged load estimation. This suggests that it is important to control nonpoint source pollutant such as livestock and land use groups as well as point source to contribute the proposition of the water quality improvement plan according to the characteristics of the bay.

Analysis of Non-Biodegradable Organic Matter Leakage Characteristics and Correlation Analysis in Paldang Lake and its Upper Reaches (팔당호와 팔당호 상류의 난분해성 유기물질 유출 특성 분석 및 상관성 분석)

  • Chaewon Kang;Kyungik Gil
    • Journal of Wetlands Research
    • /
    • v.25 no.4
    • /
    • pp.221-229
    • /
    • 2023
  • Extracted from the metropolitan area, the Paldang Lake, which supplies approximately 8 million tons of water, has achieved a BOD (Biochemical Oxygen Demand) of 1.1 mg/L as a result of water quality preservation policies. However, concerning the COD (Chemical Oxygen Demand) component that encompasses refractory organic matter, there has been an observable upward trend in concentration. The introduction of refractory organic matter into the water source of Paldang Lake brings potential increments in BOD, generates off-putting tastes and odors in tap water, increases THM (Trihalomethane) formation, and triggers algae proliferation. Moreover, if residual hazardous refractory pollutants persist in aquatic environments, they may induce endocrine disruption and phenomena such as antibiotic resistance. In this study, a monitoring campaign was executed to discern the concentration of refractory organic matter emissions from point and non-point sources within Paldang Lake and its upstream region, with the aim of managing refractory organic matter in Paldang Lake. By comparing refractory organic matter emission concentrations across monitored areas, the elimination efficiency at wastewater treatment plants was assessed. Additionally, employing the Pearson correlation correlation analysis technique, correlations among refractory organic matter indices, antecedent wet days, and antecedent dry days were explored. The concentrations of refractory organic matter in rivers and Paldang Lake exhibited a similar pattern. Wastewater treatment plant effluents exhibited higher concentrations compared to rivers and Paldang Lake. The assessment of refractory organic matter removal at wastewater treatment plants indicated a removal efficiency of 65.73%. However, no significant correlation emerged between refractory organic matter emission concentration and antecedent wet days or priory antecedent dry days. This absence of correlation is attributed to data scarcity, underscoring the need for long-term monitoring and data accumulation.

Evaluation of Treatment Efficencies of Pollutants in Bongsan Constructed Wetlands for Treating Non-point Source Pollution (비점오염원 저감을 위한 봉산 인공습지의 오염물질 정화효율 평가)

  • Choi, Ik-Won;Moon, Sung-Dong;Seo, Dong-Cheol;Kang, Se-Won;Lim, Byung-Jin;Park, Jong-Hwan;Kim, Kap-Soon;Lee, Jun-Bae;Heo, Jong-Soo;Cho, Ju-Sik
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.44 no.6
    • /
    • pp.1089-1094
    • /
    • 2011
  • To treat non-point source pollution in Juam lake, removal efficiencies of pollutants were investigated in Bongsan constructed wetlands (CWs) at different treatment time, stages and wastewater loads. The constructed wetlands consisted of forebay, $1^{st}$ and $2^{nd}$ wetlands. The concentrations of BOD, SS, T-N, and T-P in inflow were $1.87mg\;L^{-1}$, $1.62mg\;L^{-1}$, $11.47mg\;L^{-1}$, and $4.40mg\;L^{-1}$, respectively. The removal rates of BOD, SS, T-N, and T-P in Bongsan CWs were 26, 18, 16 and 9%, respectively. The removal rates of BOD and T-N were higher than those for SS and T-P. The amounts of pollutant removal in Bongsan CWs were higher in the order of forebay > $1^{st}$ wetland > $2^{nd}$ wetland for BOD, forebay > $2^{nd}$ wetland > $1^{st}$ wetland for SS, $1^{st}$ wetland > forebay > $2^{nd}$ wetland for T-N and $2^{nd}$ wetland > forebay > $1^{st}$ wetland for T-P.

Effect of Land Use on the Water Quality of Small Agricultural Watersheds in Kangwon-do (토지이용이 농업소유역의 수질에 미치는 영향)

  • Choe, Jung-Dae;Lee, Chan-Man;Choe, Ye-Hwan
    • Journal of Korea Water Resources Association
    • /
    • v.32 no.4
    • /
    • pp.501-510
    • /
    • 1999
  • Stream and groundwater qualities of small agricultural watershed in Kangwon Probince, Korea were monitored 1 to 2 years, and the relationships between stream and groundwater qualities and seasonal water quality changes analyzed. Flooded paddy fields influenced groundwater level and quality during rice culture. The differences between groundwater levels during rice culture and non-culture spans were between 0.8 and 2.91 m. Seasonal changes of total nitrogen and nitrate nitrogen concentrations of stream and groundwater were very similar and groundwater quality was thought to have a profound impact on stream quality of the research watersheds. Suspended solids and BOD maintained the first degree stream water quality throughout the monitoring period except for a few and short flooding spans. The concentrations of total phosphorus and total bacteria of both waters showed wide variations and any seasonal trends were not observed. Long-term monitoring studies on small rural watersheds were recommended to understand the pattern of both stream and groundwater quality changes with respect to land use, season and cultural practice, and to apply the results to develop effective water quality management policies for large river and domestic water supply systems.

  • PDF

Evaluation of Spatial and Temporal Variations of Water Quality in Lake Shihwa and Outer Sea by Using Water Quality Index in Korea: A Case Study of Influence of Tidal Power Plant Operation (수질평가지수를 이용한 시화호 내측 및 외측 해역의 시·공간적 수질 변화 평가: 조력발전소 가동에 따른 영향 연구)

  • Ra, Kongtae;Kim, Joung-Keun;Kim, Eun-Soo;Kim, Kyung-Tae;Lee, Jung-Moo;Kim, Sung-Keun;Kim, Eu-Yeol;Lee, Seung-Yong;Park, Eun-Ju
    • Journal of the Korean Society for Marine Environment & Energy
    • /
    • v.16 no.2
    • /
    • pp.102-114
    • /
    • 2013
  • The basin of Lake Shihwa is one of highly industrialized region of Korea and a current environmental issue of study area is the operation of tidal power plant (TPP) to improve water quality. The application of water quality index (WQI) which integrates five physiochemical parameters (transparency, DO, DIN, DIP and chlorophyll-a) of water quality in Lake Shihwa and outer sea during 2011~2012 were performed not only to evaluate the spatial and temporal distribution of the water quality but also to assess the effect of water quality improvement by the operation of tidal power plant. The higher WQI values were observed in monitored sites near the industrial complexes in Lake Shihwa and the outfall of wastewater treatment plants (WWTPs) in outer sea. This indicates that the quality of seawater is influenced by diffuse non-point sources from industrial, municipal and agricultural areas in Lake Shihwa and by point sources from the effluence of municipal and industrial wastewater throughout WWTPs in outer sea. Mean WQI value decreased from 53.0 in 2011 to 42.8 in 2012 of Lake Shihwa. Water quality has improved significantly after TPP operation because enhancement of seawater exchange between Lake Shihwa and outer sea leads to improve a hypoxic condition which is primarily a problem in Lake Shihwa. Mean WQI of outer sea showed similar values between 2011 and 2012. However, the results of hierarchical cluster analysis and the deterioration of water quality in summer season indicate that the operation of tidal power plant was not improved the water quality in the upper most area of Lake Shihwa. To successfully improve overall water quality of Lake Shihwa, it is urgently necessary to manage and reduce of non-point pollution sources of the basin of Lake Shihwa.

Sewer Decontamination Mechanism and Pipe Network Monitoring and Fault Diagnosis of Water Network System Based on System Analysis (시스템 해석에 기초한 하수관망 오염 매카니즘과 관망 모니터링 및 이상진단)

  • Kang, OnYu;Lee, SeungChul;Kim, MinJeong;Yu, SuMin;Yoo, ChangKyoo
    • Korean Chemical Engineering Research
    • /
    • v.50 no.6
    • /
    • pp.980-987
    • /
    • 2012
  • Nonpoint source pollution causes leaks and overtopping, depending on the state of the sewer network as well as aggravates the pollution load of the aqueous water system as it is introduced into the sewer by wash-off. According, the need for efficient sewer monitoring system which can manage the sewage flowrate, water quality, inflow/infiltration and overflow has increased for sewer maintenance and the prevention of environmental pollution. However, the sewer monitoring is not easy since the sewer network is built in underground with the complex nature of its structure and connections. Sewer decontamination mechanism as well as pipe network monitoring and fault diagnosis of water network system on system analysis proposed in this study. First, the pollution removal pattern and behavior of contaminants in the sewer pipe network is analyzed by using sewer process simulation program, stormwater & wastewater management model for expert (XP-SWMM). Second, the sewer network fault diagnosis was performed using the multivariate statistical monitoring to monitor water quality in the sewer and detect the sewer leakage and burst. Sewer decontamination mechanism analysis with static and dynamic state system results showed that loads of total nitrogen (TN) and total phosphorous (TP) during rainfall are greatly increased than non-rainfall, which will aggravate the pollution load of the water system. Accordingly, the sewer outflow in pipe network is analyzed due to the increased flow and inflow of pollutant concentration caused by rainfall. The proposed sewer network monitoring and fault diagnosis technique can be used effectively for the nonpoint source pollution management of the urban watershed as well as continuous monitoring system.

Characteristics of Nutrient Concentrations of Outflow during Storms in a Rural Watershed (비점원 농촌유역으로부터 강우시 유출수의 농도특성)

  • Oh, Kwang-Young;Kim, Jin-Soo;JiAng, Jie
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2006.05a
    • /
    • pp.457-461
    • /
    • 2006
  • 비점원 농촌유역으로부터 강우시 영양물질(질소, 인)의 유출특성을 파악하기 위해 2002년부터 2005년까지 5개의 강우사상을 대상으로 $2{\sim}12$시간 간격으로 유량 및 수질을 측정하였다. 강우사상시 TN농도는 유량이 증가함에 따라 상승하여 최대농도를 보인 후, 유량감소에 따라 농도가 감소하는 경우와 초기농도보다 높은 농도로 유지되는 경우의 두 가지 경향을 보였다. TP농도는 유량의 증가에 따라 급격한 상승을 보였고, 최대 값 이후 농도가 낮아져 거의 초기농도에 도달하였다. 또한, 초기농도에 대한 최대농도값의 비는 TP가 TN보다 크게 나타났다. 농촌 소유역에서의 초기유출현상(first-flush)은 40%의 누적유출량을 나타낼 때 TP의 누적유출부하량은 $70{\sim}86%$를 기록하여, 도시유역(60%)과 광역논(50%)보다 크게 나타났는데, 이는 농촌 소유역이 경사가 크고 밭 등에서 강우로 인한 토양침식 등의 영향을 크게 받기 때문으로 사료된다. 4개의 강우사상에 대한 질소의 용존성 성분의 비(TN/TDN비)는 93.6%를 나타내 질소는 대부분 용존성 형태로 유출되는 것으로 나타났고, 인의 용존성 성분의 비(TP/TDP비)는 25.4%를 나타내 인의 대부분 입자성 형태로 유출되는 것으로 나타났다. 따라서, 비점원 농촌유역으로부터 TN부하를 저감시키기 위해서는 용존성 성분을 제공하는 비료의 시용량을 줄여야 하며, TP부하를 저감시키기 위해서는 강우시 입자성 인의 유출을 제어해야 한다. 이를 위해서는 비가 많이 오는 여름철에 나지(裸地)나 밭에 식생이나 멀칭(mulching) 등으로 토양침식을 방지하는 대책이나 하천변에 완충역(riparian buffer zone)을 설치하는 대책이 필요하다. 저수지 관리를 효과적으로 수행하기 위해서는 저수지 내부의 탁도 거동을 정확히 예측할 수 있어야 한다. 따라서 추후 동수역학 및 열역학에 기초한 3차원 수치모형 연구와 성층흐름에 정밀한 밀도류 실험연구 및 이에 대한 적용이 필요할 것으로 판단된다.함으로써 정보의 질적보장과 정보전환의 표준화방안을 제시하는 정보분석시스템이다.이용, 수자원의 지속적 확보기술의 특성에 따른 4개의 평가기준과 26개의 평가속성으로 이루어진 2단계 기술가치평가 모형을 구축하였으며 2개의 개별기술에 대한 시범적용을 실행하였다.하는 것으로 추정되었다.면으로의 월류량을 산정하고 유입된 지표유량에 대해서 배수시스템에서의 흐름해석을 수행하였다. 그리고, 침수해석을 위해서는 2차원 침수해석을 위한 DEM기반 침수해석모형을 개발하였고, 건물의 영향을 고려할 수 있도록 구성하였다. 본 연구결과 지표류 유출 해석의 물리적 특성을 잘 반영하며, 도시지역의 복잡한 배수시스템 해석모형과 지표범람 모형을 통합한 모형 개발로 인해 더욱 정교한 도시지역에서의 홍수 범람 해석을 실시할 수 있을 것으로 판단된다. 본 모형의 개발로 침수상황의 시간별 진행과정을 분석함으로써 도시홍수에 대한 침수위험 지점 파악 및 주민대피지도 구축 등에 활용될 수 있을 것으로 판단된다. 있을 것으로 판단되었다.4일간의 기상변화가 자발성 기흉 발생에 영향을 미친다고 추론할 수 있었다. 향후 본 연구에서 추론된 기상변화와 기흉 발생과의 인과관계를 확인하고 좀 더 구체화하기 위한 연구가 필요할 것이다.게 이루어질 수 있을 것으로 기대된다.는 초과수익률이 상승하지만, 이후로는 감소하므로, 반전거래전략을 활용하는 경우 주식투자기간은 24개월이하의 중단기가 적합함을 발견하였다. 이상의 행태적 측면과 투자성과측면의 실증결과를 통하여 한국주식시장에

  • PDF