• Title/Summary/Keyword: 비소 정화

Search Result 56, Processing Time 0.023 seconds

Applicability of Enhanced-phytoremediation for Arsenic-contaminated Soil (비소제거효율이 향상된 식물상 정화공법의 현장적용가능성 평가)

  • Jeong, Seulki;Moon, Hee Sun;Yang, Woojin;Nam, Kyoungphile
    • Journal of Soil and Groundwater Environment
    • /
    • v.21 no.1
    • /
    • pp.40-48
    • /
    • 2016
  • A siderophore-producing bacterium (i.e., Pseudomonas aeruginosa) capable of chelating Fe3+ from its mineral form (i.e., iron oxides) was used to enhance As uptake by plants. Since As in soil is mainly associated with iron oxides, siderophore can play an important role in As mobilization through the dissolution of As-bearing iron oxides. A series of pot experiment using Pteris cretica showed that As removal by P. cretica with siderophore-producing bacteria addition increased more than three times compared to that without bacteria addition. Competition between indigenous bacteria and introduced bacteria (i.e., P. aeruginosa) was also observed, but such competition seemed not to be significant. This study suggests that enhanced-phytoremediation by siderophore-producing bacteria addition could be a visible option for longterm As removal in the forest area at the former Janghang smelter site.

Evaluation of Stabilization Capacity for Typical Amendments based on the Scenario of Heavy Metal Contaminated Sites in Korea (국내 중금속 부지오염시나리오를 고려한 안정화제의 중금속 안정화 효율 규명)

  • Yang, Jihye;Kim, Danu;Oh, Yuna;Jeon, Soyoung;Lee, Minhee
    • Economic and Environmental Geology
    • /
    • v.54 no.1
    • /
    • pp.21-33
    • /
    • 2021
  • The purpose of this study is to determine the order of priority for the use of amendments, matching the optimal amendment to the specific site in Korea. This decision-making process must prioritize the stabilization and economic efficiency of amendment for heavy metals and metalloid based on domestic site contamination scenarios. For this study, total 5 domestic heavy metal contaminated sites were selected based on different pollution scenarios and 13 amendments, which were previously studied as the soil stabilizer. Batch extraction experiments were performed to quantify the stabilization efficiency for 8 heavy metals (including As and Hg) for 5 soil samples, representing 5 different pollution scenarios. For each amendment, the analyses using XRD and XRF to identify their properties, the toxicity characteristics leaching procedure (TCLP) test, and the synthetic precipitation leaching procedure (SPLP) test were also conducted to evaluate the leaching safety in applied site. From results of batch experiments, the amendments showing > 20% extraction lowering efficiency for each heavy metal (metalloid) was selected and the top 5 ranked amendments were determined at different amount of amendment and on different extraction time conditions. For each amendment, the total number of times ranked in the top 5 was counted, prioritizing the feasible amendment for specific domestic contaminated sites in Korea. Mine drainage treatment sludge, iron oxide, calcium oxide, calcium hydroxide, calcite, iron sulfide, biochar showed high extraction decreasing efficiency for heavy metals in descending order. When the economic efficiency for these amendments was analyzed, mine drainage treatment sludge, limestone, steel making slag, calcium oxide, calcium hydroxide were determined as the priority amendment for the Korean field application in descending order.

Growth and Heavy Metal Absorption Capacity of Aster koraiensis Nakai According to Types of Land Use (토지이용 형태별 벌개미취의 생육 및 중금속 흡수능)

  • Ju, Young-Kyu;Kwon, Hyuk-Jun;Cho, Ju-Sung;Shin, So-Lim;Kim, Tae-Sung;Choi, Su-Bin;Lee, Cheol-Hee
    • Korean Journal of Plant Resources
    • /
    • v.24 no.1
    • /
    • pp.48-54
    • /
    • 2011
  • This study was performed to analyze the possibility of using Korean native Aster koraiensis Nakai for phytoremediation at various fields. A. koraiensis was cultivated at paddy, upland and forest soils contaminated with heavy metals. After 8 weeks of cultivation, and growth and its absorbing capacity of heavy metals were analyzed. The results showed that A. koraiensis was grown well even at the soil highly contaminated with heavy metals, which means it has a tolerance to heavy metals. As analysis results of arsenic, cadmium, copper, lead and zinc contents absorbed from various soils contaminated with heavy metals, heavy metal absorbing capacity of A. koraiensis was depending on the heavy metal contents in the soils and soil property. In case of arsenic, cadmium and copper, heavy metal accumulation capacities of Aster koraiensis were much influenced by contents of heavy metals in the soils. Absorbing capacity of plants was increased when heavy metal contents in the soils were high. Lead absorbing capacity was depending more on soil property than lead contents in the soil, and was great at sandy soil of forest. Zinc absorbing capacity was influenced by both soil properties and Zn contents in the soil, was increased at paddy soil contaminated with high concentrations of heavy metals and upland soils. In general, A. koraiensis had a tolerance to heavy metals and showed great absorbing capability of heavy metals. So A. koraiensis can be used as a good landscape material for phytoremediation at various soils contaminated with heavy metals.

Human Risk Assessment of Arsenic and Heavy Metal Contamination and Estimation of Remediation Concentration within Abandoned Metal Mine Area (폐금속 광산지역 비소 및 중금속 오염에 대한 인체위해성평가 및 복원농도 설정)

  • Lee, Sang-Woo;Kim, Jeong-Jin;Park, Mi Jeong;Lee, Sang-Hwan;Kim, Soon-Oh
    • Journal of the Mineralogical Society of Korea
    • /
    • v.28 no.4
    • /
    • pp.309-323
    • /
    • 2015
  • This study was initiated to propose the method for human risk assessment suitable to metal mine area. Using a variety of exposure parameters extracted from the investigation of abandoned metal mines, the proposed method was applied to assess the risk of As and heavy metal contamination for inhabitants (male and female adults and child) within an abandoned mine area. Based on the results of risk assessment, in addition, target remediation concentrations of each media (soil, groundwater, and surface water) were estimated. The results indicate that total carcinogenic risk (TCR) and hazard index (HI) representing carcinogenic and non-carcinogenic risks, respectively, were calculated to exceed the tolerable levels (1.00E-6 and 1) with regard to two exposure pathways (groundwater and crop intakes) and As. Thus, the human risk of study area was evaluated to be significant. Based on the target risk (TR) for carcinogens, the remediation concentrations of soil were computed to be 6.83~6.85 mg/kg and 18.41~18.46 mg/kg for As and Pb, respectively. In terms of target hazard index (THI) for non-carcinogens, the remediation concentrations of soil were calculated to be 17.38 mg/kg for Cu and 9.13 mg/kg for As.

Applicability Test of Various Stabilizers for Heavy Metals Contaminated Soil from Smelter Area (제련소 주변 오염토양의 중금속 안정화를 위한 다양한 안정화제의 적용성 연구)

  • Jeon, Jonwon;Bae, Bumhan;Kim, Younghun
    • Journal of the Korean GEO-environmental Society
    • /
    • v.11 no.11
    • /
    • pp.63-75
    • /
    • 2010
  • There are several remediation technologies for heavy metal contaminated soils but increasing cost limits the application of the technology if the contaminated area is large. Therefore, stabilization, which blocks the release of heavy metals or makes slow the release, is one of the applicable technology for the heavy metal contaminated soil. Current study is an applicability test for a smelter area with various stabilizer such as magnetite, hematite, zeolite-A, zeolite-X, zeolite-Y, zinc oxide, calcium oxide, carbon trioxide, manganese oxide, manganese dioxide, fish bone, sodium phosphate. The soil contaminated with arsenic, lead, copper, nickel, and zinc could not be stabilized only one stabilizer which is known to have stability for certain metal. Many of the stabilizer works for a few metal but not all of the heavy metal. In several cases, stabilizers increase the release of the other metals while they stabilize some metals. In general, the stabilizing efficiency was increased with time. For Ni, Pb, calcium oxide, carbon trioxide, manganese oxide had good stabilizing effect in water extractable portion. For Cu, manganese oxide, zeolite showed good results especially in the exchangeable portion of the sequential extraction. For As, magnetite had good ability but most of the metal oxide which showed good result for other heavy metals increased with the release of As. Current study suggest that multiple stabilizers are needed for the contaminated soil and dose of the stabilizer and stabilizing time should be carefully considered for the soil contaminated with various metals.

In-situ Stabilization of Heavy Metal Contaminated Farmland Soils Near Abandoned Mine, using Various Stabilizing Agents: Column Test Study (폐광산 주변 중금속 오염 농경지 토양복원을 위한 다양한 첨가제의 안정화 효율 비교: 컬럼시험연구)

  • Lee, Sang-Hoon;Cho, Jung-Hoon
    • Journal of Soil and Groundwater Environment
    • /
    • v.14 no.4
    • /
    • pp.45-53
    • /
    • 2009
  • This study concerned remediation of heavy metal contaminated farmland soils near abandoned mine, using stabilization method, with particular emphasis on the remediating the soils contaminated with multi-elements. In this study, stabilizing heavy metals based on 'In-situ chemical fixation' has been applied to the soil collected from an abandoned mine in Korea, using column test, with various stabilizing agents, including $FeSO_4$, $KMnO_4$, sludge (collected from coal mine drainage treatment pond), zero-valent iron (ZVI), zeolite and $CaCO_3$. Sixty five-days operation of the flow-through columns yield $FeSO_4\;+\;KMnO_4$ and zeolite are efficient on reducing As leaching from the soil. ZVI and sludge are reducing the leaching of Cu. Although $FeSO_4\;+\;KMnO_4$ seem to be efficient for most heavy metals, high pH in the initial stage of test enabled high leaching of the heavy metals, whereas fixation of the heavy metals maintain throughout the rest of the test period, with increasing pH up to around 6. Addition of some alkaline agent may inhibit the low pH during the application. The column test was also run as two set: one set incubated with deionized water for 72 hours prior to starting the test, and the other without incubation. The incubated set demonstrated better stabilizing efficiency, indicating the potential optimized operation method.

Effect of Mixed Planting Ratios of Pteris multifida Poir. and Artemisia princeps Pamp. on Phytoremediation of Heavy Metals Contaminated Soil (중금속 오염토양 정화에 영향을 미치는 봉의꼬리(Pteris multifida Poir.)와 쑥(Artemisia princeps Pamp.)의 혼합식재 비율)

  • Kwon, Hyuk Joon;Jeong, Seon A;Shin, So Lim;Lee, Cheol Hee
    • Korean Journal of Plant Resources
    • /
    • v.30 no.2
    • /
    • pp.160-166
    • /
    • 2017
  • This study was performed to develop the efficient phytoremediation model in the paddy soil contaminated with heavy metals by cultivating Pteris multifida and Artemisia princeps with different mixing ratios (1:0, 8:1, 6:1, 4:1). As a result of investigating the heavy metal accumulation of each plant per dried material (1 kg), content of arsenic and cadmium was the highest in aerial part of P. multifida (169.82, $1.70mg{\cdot}kg^{-1}DW$, each) among the treated group. Lead content was the highest ($12.58mg{\cdot}kg^{-1}DW$) in the aerial part of P. multifida cultivated with 8:1 mixed planting. But the content of copper and zinc was the highest (33.94, $61.78mg{\cdot}kg^{-1}DW$, each) in the aerial part of A. princeps with 8:1 treatment. Regardless of heavy metals, plant uptake from the $1m^2$ soil was the highest in 4:1 mixed planting group, which showed the best yield of A. princeps.

Phytoremediation of Soils Contaminated with Heavy Metal by Long-Term Cultivation (장기재배 시험에 의한 중금속 오염토양의 식물정화)

  • Jung, Goo-Bok;Kim, Won-Il;Lee, Jong-Sik;Kim, Kyung-Min
    • Korean Journal of Environmental Agriculture
    • /
    • v.21 no.1
    • /
    • pp.31-37
    • /
    • 2002
  • In order to select proper plants for phytoremediation at heavy metal contaminated areas, eight species of non-edible plants were cultivated at the heavy metal contaminated soils near a metal smelter. The content of the absorbed heavy metals (Cd, Cu, Pb and As) at different part of the plants were analyzed. Plants included five tree species (Populus nigra x P. maximowiczii, Euonymus japonica, Acer palmantum, Celtis sinensis, Buxus microphylla), two flower species (Rhododendron lateritium, Calendula officinalis), and lawn (Zoysia japonica). Biomass yield of tree species was higher than those of flower or lawn species. Heavy metals were highly accumulated in roots compared to those In leaves and stems. The concentrations of Cd, Cu, Pb, and As in Buxus microphylla were greater than those in other plant species. Total absorbed Cd and Pb contents, from high to low by each plant in experimental plots were in the order of Populus nigra x P. maximowiczii, Celtis sinensis and Acer palmantum. They were Celtis sinensis, Populus nigra x P. maximowiczii and Buxus microphylla for Cu, and Buxus microphylla, Acer palmantum and Populus nigra x P. maimowiczii for As. It was estimated that among eight plant species used in the experiment Populus nigra x P. maximowiczii, Buxus microphylla, Acer palmantum, and Celtis sinensis were the most effective species for phytoremediation in the heavy metals polluted areas considering biomass yield and heavy metal uptake.

Evaluation of Characteristics of Sludge generated from Active Treatment System of Mine Drainage (광산배수의 적극적 처리시설에서 발생하는 슬러지 특성 평가)

  • Jung-Eun Kim;Won Hyun Ji
    • Economic and Environmental Geology
    • /
    • v.56 no.4
    • /
    • pp.409-419
    • /
    • 2023
  • Acid mine drainage(AMD) treatment is classified as both passive and active treatment. During the treatment, about 5,000 tons of neutralization sludge is generated as a by-product per year in Korea. This study was conducted to evaluate the characteristics of sludge generated from physico·chemical treatment processes as an active treatment from 5 different sources (D, H, S, T, Y) and the possibility of the sludges being recycled. The sludges have a pH range of 5.86 ~ pH 7.89, and a water content range of 51% ~ 82%. Most of particle sizes were less than 25 ㎛. In analysis of inorganic elements, the concentration of Al, Fe, and Mn were between 1,189 mg/kg ~ 129,344 mg/kg, 106,132 mg/kg ~ 338,011 mg/kg, and 3,472 mg/kg ~ 11,743 mg/kg, respectively. The concentration of As and Zn in sludge-T, Cd in sludge-D, Ni in sludge-H, Zn in sludge-S, and Cd in sludge-Y exceeded the soil contamination standards of Korea. The results from 2 separate kinds of leaching test, the Korea Standard Leaching Test(KSLT) and Toxicity Characteristic Leaching Procedure(TCLP), showed that all the sludges met the Korea groundwater standards. From the XRD and SEM-EDS analysis, the peaks of calcite and quartz were found in the sludges. The sludge also had a high proportion of Fe and O, and the majority of the composition was amorphous iron hydroxide.

Removal of As, Cadmium and Lead in Sandy Soil with Sonification-Electrokinetic Remediation (초음파동전기기법을 이용한 비소, 카드뮴, 납으로 오염된 사질토 정화 연구)

  • Oh, SeungJin;Oh, Minah;Lee, Jai-Young
    • Journal of Soil and Groundwater Environment
    • /
    • v.18 no.7
    • /
    • pp.1-11
    • /
    • 2013
  • The actively soil pollution by the toxic heavy-metals like the arsenic, cadmium, lead due to the industrialization and economic activity. The uses the electrokinetic remediation of contaminated soil has many researches against the fine soil having a small size in the on going. However, it is the actual condition which the research result that is not effective due to the low surface charge of the particle and high permeability shows in the electrokinetic remediation in comparison with the fine soil in the case of the sandy soil in which the particle size is large. In this research, the electrokinetic remediation and ultrasonic wave fetch strategy is compound applied against the sandy soil polluted by the arsenic, cadmium, and lead removal efficiency of the sandy soil through the comparison with the existing electrokinetic remediation tries to be evaluated. First of all, desorption of contaminants in soil by ultrasonic extraction in the Pre-Test conducted to see desorption effective 5~15%. After that, By conducted Batch-Test results frequency output century 200 Khz, reaction time 30 min, contaminated soil used in experiment was 500 g. Removal efficiency of arsenic, cadmium, lead are 25.55%, 8.01%, 34.90%. But, As, Cd, Pb remediation efficiency less than 1% in EK1(control group).