DOI QR코드

DOI QR Code

Phytoremediation of Soils Contaminated with Heavy Metal by Long-Term Cultivation

장기재배 시험에 의한 중금속 오염토양의 식물정화

  • Jung, Goo-Bok (National Institute of Agricultural Science and Technology, RDA) ;
  • Kim, Won-Il (National Institute of Agricultural Science and Technology, RDA) ;
  • Lee, Jong-Sik (National Institute of Agricultural Science and Technology, RDA) ;
  • Kim, Kyung-Min (Dept. of Environmental Engineering, Yonsei University)
  • 정구복 (농업과학기술원 환경생태과) ;
  • 김원일 (농업과학기술원 환경생태과) ;
  • 이종식 (농업과학기술원 환경생태과) ;
  • 김경민 (연세대학교 환경공학과)
  • Published : 2002.03.31

Abstract

In order to select proper plants for phytoremediation at heavy metal contaminated areas, eight species of non-edible plants were cultivated at the heavy metal contaminated soils near a metal smelter. The content of the absorbed heavy metals (Cd, Cu, Pb and As) at different part of the plants were analyzed. Plants included five tree species (Populus nigra x P. maximowiczii, Euonymus japonica, Acer palmantum, Celtis sinensis, Buxus microphylla), two flower species (Rhododendron lateritium, Calendula officinalis), and lawn (Zoysia japonica). Biomass yield of tree species was higher than those of flower or lawn species. Heavy metals were highly accumulated in roots compared to those In leaves and stems. The concentrations of Cd, Cu, Pb, and As in Buxus microphylla were greater than those in other plant species. Total absorbed Cd and Pb contents, from high to low by each plant in experimental plots were in the order of Populus nigra x P. maximowiczii, Celtis sinensis and Acer palmantum. They were Celtis sinensis, Populus nigra x P. maximowiczii and Buxus microphylla for Cu, and Buxus microphylla, Acer palmantum and Populus nigra x P. maimowiczii for As. It was estimated that among eight plant species used in the experiment Populus nigra x P. maximowiczii, Buxus microphylla, Acer palmantum, and Celtis sinensis were the most effective species for phytoremediation in the heavy metals polluted areas considering biomass yield and heavy metal uptake.

중금속 오염토양에 대한 식물학적 복원에 적합한 식물종 탐색을 위하여 수목류 5종, 화훼류 2종 및 잔디를 대상으로 제련소 인근 중금속 오염지 포장에서 3년간 재배하여 연차별로 식물중에 흡수된 중금속 함량을 조사하였다. 식물의 건물중은 양황철, 팽나무, 적단풍, 사철나무, 회양목 순이었고, 연차별 건물중의 증가도 팽나무, 양황철, 적단풍이 높게 나타났다. 식물의 중금속은 지하부가 지상부보다 높은 함량을 보였으며, 식물중 회양목은 뿌리에서 매우 높게 나타났다. 공시식물의 3년차 총 흡수량은 카드뮴이 양황철, 팽나무, 단풍나무, 구리가 팽나무, 양황철, 회양목, 납이 양황철, 팽나무, 단풍나무, 비소가 회양목, 단풍나무, 양황철 순으로 높게 나타났다. 이상의 결과에서 식물의 건물중과 중금속 흡수량을 볼 때 양황철, 회양목, 단풍나무 및 팽나무 등이 중금속으로 오염된 토양에 대한 정화 식물로 이용할 수 있을 것으로 생각되었다.

Keywords

References

  1. Salt, D. E., Blaylock, M., Kumar, PBAN., Dushenkov, S., Ensley, B. D., Chet, I. and Raskin, I. (1995) Phytoremediation. A novel strategy for the removal of toxic metals from the environment using plants, Bio/Tech. 13, 468-474 https://doi.org/10.1038/nbt0595-468
  2. Kim, J. G. and Lee, S. H. (1999) Phytoremediation, 'Proceedings of 30th Meeting & Symposium on 'Remediation Technology and Prospect'. Kor. J. Environ. Agric. 57-88
  3. Salt, D. E., Smith, R. D. and Raskin, I. (1998) Phytoremediation, Ann. Rev. Plant Physiol. Plant Mol. Biol. 49, 643-668 https://doi.org/10.1146/annurev.arplant.49.1.643
  4. Baker, A. J. M. and Brooks, R. R. (1989) Terrestrial higher plants which hyperaccumulate metallic elements - A review of their distribution, ecology and phytochemistry, Biorecovery 1, 81-126
  5. Chaney, R. L., Malik, M., Li, Y. M., Brown, S. L., Angle, J. S. and Baker, A. J. M. (1997) Phytoremediation of soil metals, Current Opinions in Biotechnology 8, 279-284 https://doi.org/10.1016/S0958-1669(97)80004-3
  6. Cunningham, S. D, and Ow, D. W. (1996) Promises and prospects of phytoremediation, Plant Physiol. 110, 715-719 https://doi.org/10.1104/pp.110.3.715
  7. Kang, B. H., Shim, S. I., Lee, S. G., Kim, K. H. and Chung, I. M. (1998) Study on the potential of phytoremediation using wild plants for heavy metal pollution, Kor. J. Environ. Agric. 17(4), 312-318
  8. Kim, B. Y., Kim, K. S. and Cho, J. K. (1989) Studies on the cadmium removal from soil through crops cultivation, J. Korean Soc. Soil Sci. Fert. 22(2), 111-115
  9. Kim, J. G., Lim, S. K., Lee, S. H., Yoon, Y. M., Lee, C. H. and Jeong, C. Y. (1999) Evaluation of heavy metal pollution and plant survey around inactive and abandoned mining areas for phytoremediation of heavy metal contaminated soils, Kor. J. Environ. Agric. 18(1), 28-34
  10. Jung, K. C., Kim, B. J. and Han, S. G. (1993) Survey on heavy metals contents in native plant near old zinc mining sites, Kor. J. Environ. Agric. 12(2), 105-111
  11. Brown, S. L., Chaney, R. L., Angle, J. S. and Baker, A. J. M. (1994) Phytoremediation potential of Thlaspi caerulescens and bladder campion for zinc and cadmium contaminated soil, J. Environ. Qual. 23, 1151-1157 https://doi.org/10.2134/jeq1994.00472425002300060004x
  12. Brown, S. L., Chaney, R. L., Angle, J. S. and Baker, A. J. M. (1995) Zinc and cadmium uptake by hyperaccumulator Thlaspi caerulenscens grown in nutrient solution, Soil Sci. Am. J. 59, 125-133 https://doi.org/10.2136/sssaj1995.03615995005900010020x
  13. Ebbs, S. D., Lasat, M. M., Brady, D. Cornish, J., Gordon, J. R. and Kochian, L. V. (1997) Phytoextraction of cadmium and zinc from a contaminated soil, J. Environ. Qual. 26, 1424-1430 https://doi.org/10.2134/jeq1997.00472425002600050032x
  14. Wenzel, W. W. and Jockwer, F. (1999) Accumulation of heavy metals in plants grown on mineralised soils of the Austrian Alps, Environmental Pollution 104, 145-155 https://doi.org/10.1016/S0269-7491(98)00139-0
  15. Muller, H. W., Oort, F. van., Gelie, B. and Balabane, M. (2000) Strategies of heavy metal uptake by three plant species growing near a metal smelter, Environmental Pollution 109, 231-238 https://doi.org/10.1016/S0269-7491(99)00262-6
  16. Wonga, H. K. T., Gauthierb, A. and Nriaguc, J. O. (1999) Dispersion and toxicity of metals from abandoned gold mine tailings at Goldenville, Nova Scotia, Canada, The Science of The Total Environment 228(1), 35-47 https://doi.org/10.1016/S0048-9697(99)00021-2
  17. NlAST (National Institute of Agricultural Science and Technology) (1999) Survey on the changes of heavy metal contents of agricultural field in Korea. A counter mersuring studies to the changes of agricultural environment. p.3360
  18. Ministry of Environment (Korea) (1999) Soil Environmental Conservation Act
  19. NlAST (National Institute of Agricultural Science and Technology) (1988) Methods of Soil Chemical Analysis. p.15-230
  20. Ministry of Environment (Korea). (1999) Standard Test Method for Soil Pollution

Cited by

  1. Effect of Sulfur Powder and Citric Acid on Arsenic Phytoremediation Using Pteris multifida in Forest Soil vol.17, pp.1, 2014, https://doi.org/10.13087/kosert.2014.17.1.001
  2. Contrast Effect of Citric Acid and Ethylenediaminetetraacetic Acid on Cadmium Extractability in Arable Soil vol.48, pp.6, 2015, https://doi.org/10.7745/KJSSF.2015.48.6.634
  3. Effect of Shading Treatment on Arsenic Phytoremadiation Using Pteris multifida in Paddy Soil vol.26, pp.1, 2013, https://doi.org/10.7732/kjpr.2013.26.1.068
  4. Microcosm Experiment for Evaluating Efficiency of Chemical Amendments on Remediation of Heavy Metal Contaminated Soil vol.48, pp.2, 2015, https://doi.org/10.7745/KJSSF.2015.48.2.138
  5. Screening for Heavy Metals Accumulation Ability of Twelve Pteridophyta Species at Soil Contaminated with Heavy Metals vol.17, pp.3, 2014, https://doi.org/10.11628/ksppe.2014.17.3.203
  6. Current research trends for heavy metals of agricultural soils and crop uptake in Korea vol.31, pp.1, 2012, https://doi.org/10.5338/KJEA.2012.31.1.75