DOI QR코드

DOI QR Code

Effect of Coverings on the Growth of Ginseng and the Persistency of Procymidone in Growing Soils

인삼재배를 위한 차광조건이 인삼의 생육과 토양 중 Procymidone의 잔류에 미치는 영향

  • 김효근 (한국인삼연초연구원 연구기획부) ;
  • 이규승 (충남대학교 농화학과)
  • Published : 2002.03.31

Abstract

Ginseng (Panax ginseng C. A. Meyer) has been cultivated on raised beds with shading condition for 4 to 6 years because of its physiological characteristics. This shading condition maintains relatively stable soil environments protecting from rainfall and direct sunlight. Therefore, pesticides in ginseng growing soil are exposed to far different environment from the general cropping field. To study the behavior of pesticides under this condition, the effect of covering on the persistency of Procymidone in ginseng cultivating soil was investigated by using several shade materials. The most important factor affecting Procymidone persistency in soil under covering was water leakage rates of shade materials.

본 실험에서는 음지식물인 인삼의 재배에 필요한 차광조건이 토양 중 Procymidone의 잔류성에 미치는 영향을 연구하였다. 이를 위해서 몇 가지 차광재료들을 사용하여 여러 가지 차광조건을 만들고서, 각 차광조건에서의 토양 중 Procymidone의 잔류성을 조사하였다. 여러 차광재료들을 인삼포장에 가설하여 만든 다양한 차광조건하에서 토양 중 Procymidone의 반감기는 차광재료에 따라 큰 차이를 보였으며, 혼합일복 (161일)>유리 (76일)>청색차광망 (39일)$\simeq$흑색차광망 (36일)>볏짚일복 (21일)>노지 (7일) 순이었고, 이러한 토양 중 잔류성의 변화는 각 차광재료들의 누수율과 깊은 관련이 있는 것으로 해석할 수 있었다. 이러한 결과로부터 인삼재배를 위한 차광시설의 존재는 토양 중 Procymidone의 잔류성을 현저하게 증가시킨다는 사실을 알 수 있으며 농약의 토양 중 잔류성을 감소시키는 측면에서만 고려할 때, 강우시 가능한한 누수율을 증대시키는 차광재료들을 사용함이 바람직하다고 생각된다. 토양 중 Prorymidone의 잔류반감기는 차팡재료들에 따라 큰 차이를 보였으며, 이는 각 차광재료들의 누수율과 깊은 관련이 있는 것으로 해석할 수 있었다.

Keywords

References

  1. 한국인삼연초연구원 (1993) 고려인삼, p.288
  2. 천성기 (1989) 광량 및 광질이 고려인삼의 생육과 품질에 미치는 영향, 경북대학교 박사학위 논문
  3. 목성균, 천성기, 이성식, 신동양, 이장은 (1984) 인삼의 최적환경조성 및 해가림 자재 개발연구, 인삼연구보고서(재배분야), 한국인삼연초연구소
  4. 김영호, 유연현, 조대휘, 오승환 (1990) 해가림 종류가 인삼점무늬병 발생과 수량에 미치는 영향, 한국식물병리학회지, 6(1), 42-50
  5. 목성균, 천성기, 이태수 (1990) 인삼의 재배환경조건 개선 및 생력재배연구, 인삼연구보고서(재배분야), 한국인삼연초연구소, p.341-431
  6. 목성균, 천성기, 이성식, 이태수 (1994) 해가림 피복물의 색상이 고려인삼의 생육 및 saponin 함량에 미치는 영향, 고려인삼학회지, 18(3), 182-186
  7. Cheng, H. H. (1990) Pesticides in the soil environment:Processes, Impacts, and Modeling, Soil Science Society of America, Inc., WI, p.530
  8. 한국인삼연초연구원 (1996) 최신고려인삼(재배편), p.355
  9. Hesse, P. R. (1972) A textbook of soil chemical analysis, Chemical Publishing Co., Inc., p.17
  10. Walker, A. (1987) Further observations on the enhanced degradation of iprodione and vinclozolin in soil, Pestic. Sci. 21, 219-231 https://doi.org/10.1002/ps.2780210308
  11. Slade, E. A., Fullerton, R. A., Stewart, A. and Young H. (1992) Degradation of the dicarboximide fungicides iprodione, vinclozolin and Procymidone in Patumahoe clay loam soil, New Zealand, Pestic. Sci. 35, 95-100
  12. 이종화외 7인 (1983) 인삼의 영양생리에 관한 연구, 인삼연구보고서(재배분야), 한국인삼연초연구소, p.15-40
  13. 정필균, 고문환, 엄기태 (1985) 토양유실량 예측을 위한 작부인자 검토, 한국토양비료학회지, 18(1), 7-13
  14. Mikami, N., Imanishi, K., Yamada, H. and Miyamoto J. (1984) Photolysis and hydrolysis of the fungicide Procymidone in water, J. Pestic. Science, 9, 223-228 https://doi.org/10.1126/science.ns-9.214.223
  15. Edwards, C. A. (1966) Insecticide residues in soils, Residue Review, 13, 83-132 https://doi.org/10.1007/978-1-4615-8407-0_4
  16. Hurle, K. and A. Walker (1980) Interactions between herbicides and the soil, R. J. Hance, (Ed), Academic Press, London. p.83-122
  17. Suett, D. L. (1971) Persistence and degradation of chlorfenvinphos, diazinon, fonofos and phorate in soils and their uptake by carrots, Pestic. Sci. 2, 105-112 https://doi.org/10.1002/ps.2780020304
  18. Suett, D. L. (1975) Persistence and degradation of chlorfenvinphos, chloremphos disulfoton, phorate and pirimiphos- ethyl following spring and late-summer soil application, Pestic. Sci. 6, 385-393 https://doi.org/10.1002/ps.2780060406

Cited by

  1. Development of Local Food Content in Jinan-Gun and Gurye-Gun through Storytelling vol.28, pp.2, 2013, https://doi.org/10.7318/KJFC/2013.28.2.145
  2. Multiresidue pesticide analysis in Korean ginseng by gas chromatography–triple quadrupole tandem mass spectrometry vol.134, pp.4, 2012, https://doi.org/10.1016/j.foodchem.2012.04.094
  3. Processing and Reducing Factors of Difenoconazole during Ginseng Processing vol.43, pp.3, 2011, https://doi.org/10.9721/KJFST.2011.43.3.263
  4. Streamlined pretreatment and GC–FPD analysis of multi-pesticide residues in perennial Morinda roots: A tropical or subtropical plant vol.95, 2014, https://doi.org/10.1016/j.chemosphere.2013.07.085
  5. Pesticide Residue Rapid Extraction from Ginseng Tea Using a Modified Luke Method for GC–MS vol.9, pp.8, 2016, https://doi.org/10.1007/s12161-016-0400-2
  6. Evaluation of Residual Pesticides in Fresh Ginseng Collected in Seoul vol.56, pp.1, 2013, https://doi.org/10.3839/jabc.2013.006
  7. Reduction in Residual Pesticides and Quercetin Yields in Onion Peel Extracts by Washing vol.22, pp.12, 2012, https://doi.org/10.5352/JLS.2012.22.12.1665
  8. Residual Characteristics and Behavior of Azoxystrobin in Ginseng by Cultivation Conditions vol.19, pp.1, 2015, https://doi.org/10.7585/kjps.2015.19.1.14