DOI QR코드

DOI QR Code

Evaluation of Stabilization Capacity for Typical Amendments based on the Scenario of Heavy Metal Contaminated Sites in Korea

국내 중금속 부지오염시나리오를 고려한 안정화제의 중금속 안정화 효율 규명

  • Yang, Jihye (Department of Earth Environmental Sciences, Pukyong National University) ;
  • Kim, Danu (Department of Earth Environmental Sciences, Pukyong National University) ;
  • Oh, Yuna (Department of Earth Environmental Sciences, Pukyong National University) ;
  • Jeon, Soyoung (Department of Earth Environmental Sciences, Pukyong National University) ;
  • Lee, Minhee (Department of Earth Environmental Sciences, Pukyong National University)
  • 양지혜 (부경대학교 지구환경과학과) ;
  • 김단우 (부경대학교 지구환경과학과) ;
  • 오유나 (부경대학교 지구환경과학과) ;
  • 전소영 (부경대학교 지구환경과학과) ;
  • 이민희 (부경대학교 지구환경과학과)
  • Received : 2021.01.07
  • Accepted : 2021.01.12
  • Published : 2021.02.28

Abstract

The purpose of this study is to determine the order of priority for the use of amendments, matching the optimal amendment to the specific site in Korea. This decision-making process must prioritize the stabilization and economic efficiency of amendment for heavy metals and metalloid based on domestic site contamination scenarios. For this study, total 5 domestic heavy metal contaminated sites were selected based on different pollution scenarios and 13 amendments, which were previously studied as the soil stabilizer. Batch extraction experiments were performed to quantify the stabilization efficiency for 8 heavy metals (including As and Hg) for 5 soil samples, representing 5 different pollution scenarios. For each amendment, the analyses using XRD and XRF to identify their properties, the toxicity characteristics leaching procedure (TCLP) test, and the synthetic precipitation leaching procedure (SPLP) test were also conducted to evaluate the leaching safety in applied site. From results of batch experiments, the amendments showing > 20% extraction lowering efficiency for each heavy metal (metalloid) was selected and the top 5 ranked amendments were determined at different amount of amendment and on different extraction time conditions. For each amendment, the total number of times ranked in the top 5 was counted, prioritizing the feasible amendment for specific domestic contaminated sites in Korea. Mine drainage treatment sludge, iron oxide, calcium oxide, calcium hydroxide, calcite, iron sulfide, biochar showed high extraction decreasing efficiency for heavy metals in descending order. When the economic efficiency for these amendments was analyzed, mine drainage treatment sludge, limestone, steel making slag, calcium oxide, calcium hydroxide were determined as the priority amendment for the Korean field application in descending order.

국내 오염시나리오별 안정화 효율과 경제성이 뛰어난 안정화제를 선택하여 적용할 수 있도록, 국내외에서 연구된 대표적인 안정화제를 대상으로 국내 중금속 오염 현장 부지 특성별 중금속 안정화 효율이 높은 안정화제 순위를 결정하였다. 총 5종류의 오염시나리오를 가정하여 각각 해당되는 국내 오염부지 토양을 확보하였다. 국내외 활용도와 안정화 효율 연구 결과, 오염특성별 부지 시나리오에 적용 가능성 등을 고려하여 기존에 연구되었던 안정화제 13가지를 선정하였다. 선정한 오염 토양과 안정화제의 오염 가능성과 현장 적용 가능성을 평가하기 위하여 XRD/XRF 분석, 독성용출시험과 인공강우용출시험 등을 실시하였다. 부지 오염시나리오를 대표하는 5종류 오염 토양에 대하여 선정된 13종의 안정화제에 의한 비소, 수은, 납, 6가 크롬, 아연, 니켈, 구리 등 총 8종의 중금속(반금속인 비소 포함) 용출 저감 효과를 규명하는 용출 배치실험을 수행하였다. 총 5개 오염 토양에 대하여 13개 안정화제 주입 비율 3%, 5%, 7% 적용 시, 각 중금속(비소 포함)에 대한 중금속 용출 저감 효율이 안정화제를 주입하지 않은 토양 대비 20% 이상을 나타내는 안정화제 중에서 저감 효율이 높은 순위부터 5개 안정화제(Top 5)를 선택하였다. 각 안정화제에 대하여 안정화제 주입비율, 중금속 종류, 부지별 조건에 따라 수행된 배치실험 결과에 대하여 Top 5에 해당하는 총 횟수를 합산하여, 다양한 국내 부지 오염시나리오에 적용할 수 있는 안정화제의 순위를 결정하였다. 5개 오염 토양에 대하여 8개 중금속 항목별 용출 저감 효율이 20% 이상인 경우, 가장 안정화 효율이 높은 순위는 광산배수처리 슬러지(mine drainage treatment sludge), 산화철, 생석회, 소석회-석회석, 황화철, 바이오차 순으로 나타났다. 위 안정화제들에 대하여 안정화제의 효율대비 단가를 산정한 결과, 광산배수처리 슬러지, 석회석, 제강슬래그(비소의 경우), 생석회, 소석회 순으로 경제성이 높게 나타나 현장 적용성이 뛰어난 것으로 밝혀졌다.

Keywords

Acknowledgement

이 논문은 2019년도 부경대학교 자율창의연구비(2019년)의 지원을 받아 연구되었습니다. 본 논문을 세심하게 심사하여주신 심사자들께 감사드립니다.

References

  1. Basta, N.T. and McGowen, S.L. (2004) Evaluation of chemical immobilization treatments for reducing heavy metal transport in a smelter-contaminated soil. Environ. pollut, v.127, no.1, p.73-82. https://doi.org/10.1016/S0269-7491(03)00250-1
  2. Furlan, A.P., Razakamanantsoa, A., Ranaivomanana, H., Amiri, O., Levacher, D. and Deneele, D. (2020) Effect of Fly Ash on microstructural and resistance characteristics of dredged sediment stabilized with lime and cement. Constr. Build. Mater. 121637
  3. Gu, K. and Chen, B. (2020) Loess stabilization using cement, waste phosphogypsum, fly ash and quicklime for self-compacting rammed earth construction. Constr. Build. Mater. 117195 https://doi.org/10.1016/j.conbuildmat.2019.117195
  4. James, J. and Pandian, P.K. (2016) Industrial wastes as auxiliary additives to cement/lime stabilization of soils. Adv, Civ. Eng. v.2016.
  5. Kim, S.H., Jeong, S., Chung, H. and Nam, K. (2020) Contribution of precipitation and adsorption on stabilization of Pb in mine waste by basic oxygen furnace slag and the stability of Pb under reductive condition. Chemosphere, v.263.
  6. Lee, J.Y., Lee, M. and Yu, M. (2016) Draft Guideline Matching the Treatment Technology to the Soil Contaminated Site Based on the Site Properties in Korea. J. Soil & Groundwater Env, v.21, no.6, p.1-13. https://doi.org/10.7857/JSGE.2016.21.6.001
  7. Lu, C.C., Hsu, M.H. and Lin, Y.P. (2019) Evaluation of heavy metal leachability of incinerating recycled aggregate and solidification/stabilization products for construction reuse using TCLP, multifinal pH and EDTA-mediated TCLP leaching tests. J. Hazard. Mater, v.368, p.336-344. https://doi.org/10.1016/j.jhazmat.2019.01.066
  8. MIRECO (Mine Reclamation Corp) (2017) The Law about Mine Damage Prevention and Recovery
  9. Rachman, R.M., Bahri, A.S. and Trihadiningrum, Y. (2018) Stabilization and solidification of tailings from a traditional gold mine using Portland cement. Environ. Eng. Res, v.23, no.2, p.189-194. https://doi.org/10.4491/eer.2017.104
  10. USEPA (1992) Toxicity Characteristics Leaching Procedure, Method 1311
  11. USEPA (1996) Synthetic Precipitation Leaching Procedure, Method 1312
  12. USEPA (2000) Solidification/stabilization use at superfund sites, EPA/542/R-00-010, p. 2-6
  13. USEPA (2007) Treatment technologies for site cleanup: annual status report
  14. Twelfth Edition, Solid Waste and Emergency Response, 5203P, EPA542-R-07-012.
  15. Yoon, I.H., Moon, D.H., Kim, K.W., Lee, K.Y., Lee, J.H. and Kim, M.G. (2010) Mechanism for the stabilization/solidification of arsenic-contaminated soils with Portland cement and cement kiln dust. J. Environ. Manag, v.91, no.11, p.2322-2328. https://doi.org/10.1016/j.jenvman.2010.06.018
  16. Yun, S.W., Kang, S.I., Jin, H.G., Kim, H.J., Lim, Y.C., Yi, J.M. and Yu, C. (2011) An investigation of treatment effects of limestone and steel refining slag for stabilization of arsenic and heavy metal in the farmland soils nearby abandoned metal mine. Korean J. Soil Sci. Fert, v.44, no.5, p.734-744. https://doi.org/10.7745/KJSSF.2011.44.5.734
  17. Yun, S.W., Jin, H.G., Kang, S.I., Choi, S.J., Lim, Y.C. and Yu, C. (2010) A comparison on the effect of soil improvement methods for the remediation of heavy metal contaminated farm land soil. J. Korean geotechni. society, v.26, no.7, p.59-70.
  18. Xu, T., Nan, F., Jiang, X., Tang, Y., Zeng, Y., Zhang, W. and Shi, B. (2020) Effect of soil pH on the transport, fractionation, and oxidation of chromium (III). Ecotoxicol. Environ. Saf, v.195.
  19. Zhang, S. (2020) The relationship between organoclastic sulfate reduction and carbonate precipitation/dissolution in marine sediments. Mar. Geol, v428.