• Title/Summary/Keyword: 비선형 특징 추출

Search Result 122, Processing Time 0.026 seconds

A Non-linear Variant of Improved Robust Fuzzy PCA (잡음 민감성이 향상된 주성분 분석 기법의 비선형 변형)

  • Heo, Gyeong-Yong;Seo, Jin-Seok;Lee, Im-Geun
    • Journal of the Korea Society of Computer and Information
    • /
    • v.16 no.4
    • /
    • pp.15-22
    • /
    • 2011
  • Principal component analysis (PCA) is a well-known method for dimensionality reduction and feature extraction while maintaining most of the variation in data. Although PCA has been applied in many areas successfully, it is sensitive to outliers and only valid for Gaussian distributions. Several variants of PCA have been proposed to resolve noise sensitivity and, among the variants, improved robust fuzzy PCA (RF-PCA2) demonstrated promising results. RF-PCA, however, is still a linear algorithm that cannot accommodate non-Gaussian distributions. In this paper, a non-linear algorithm that combines RF-PCA2 and kernel PCA (K-PCA), called improved robust kernel fuzzy PCA (RKF-PCA2), is introduced. The kernel methods make it to accommodate non-Gaussian distributions. RKF-PCA2 inherits noise robustness from RF-PCA2 and non-linearity from K-PCA. RKF-PCA2 outperforms previous methods in handling non-Gaussian distributions in a noise robust way. Experimental results also support this.

Intelligence Package Development for UT Signal Pattern Recognition and Application to Classification of Defects in Austenitic Stainless Steel Weld (UT 신호형상 인식을 위한 Intelligence Package 개발과 Austenitic Stainless Steel Welding부 결함 분류에 관한 적용 연구)

  • Lee, Kang-Yong;Kim, Joon-Seob
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.15 no.4
    • /
    • pp.531-539
    • /
    • 1996
  • The research for the classification of the artificial defects in welding parts is performed using the pattern recognition technology of ultrasonic signal. The signal pattern recognition package including the user defined function is developed to perform the digital signal processing, feature extraction, feature selection and classifier selection. The neural network classifier and the statistical classifiers such as the linear discriminant function classifier and the empirical Bayesian classifier are compared and discussed. The pattern recognition technique is applied to the classification of artificial defects such as notchs and a hole. If appropriately learned, the neural network classifier is concluded to be better than the statistical classifiers in the classification of the artificial defects.

  • PDF

Feature Extraction based on Auto Regressive Modeling and an Premature Contraction Arrhythmia Classification using Support Vector Machine (Auto Regressive모델링 기반의 특징점 추출과 Support Vector Machine을 통한 조기수축 부정맥 분류)

  • Cho, Ik-sung;Kwon, Hyeog-soong;Kim, Joo-man;Kim, Seon-jong
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.23 no.2
    • /
    • pp.117-126
    • /
    • 2019
  • Legacy study for detecting arrhythmia have mostly used nonlinear method to increase classification accuracy. Most methods are complex to process and manipulate data and have difficulties in classifying various arrhythmias. Therefore it is necessary to classify various arrhythmia based on short-term data. In this study, we propose a feature extraction based on auto regressive modeling and an premature contraction arrhythmia classification method using SVM., For this purpose, the R-wave is detected in the ECG signal from which noise has been removed, QRS and RR interval segment is modelled. Also, we classified Normal, PVC, PAC through SVM in realtime by extracting four optimal segment length and AR order. The detection and classification rate of R wave and PVC is evaluated through MIT-BIH arrhythmia database. The performance results indicate the average of 99.77% in R wave detection and 99.23%, 97.28%, 96.62% in Normal, PVC, PAC classification.

A Study on the Process of Solving Context Problems by Prospective Teachers (예비 교사들의 맥락 문제 해결 과정 분석)

  • Shin, Bo Mi
    • Journal of Educational Research in Mathematics
    • /
    • v.22 no.4
    • /
    • pp.535-555
    • /
    • 2012
  • The aim of this study is to analyze how the context problems by prospective teachers are solved. In order to achieve this aim, this study examined the conceptual nature of context based on previous studies. I developed context problems about linear programming with reference to the results of the examination about the natural characterization of context. These problems were given to 44 prospective teachers and qualitative methods were used to analyze the data obtained from the written solutions by the participants. This study also developed the framework descriptors for this analysis in the light of the Mathematics Scoring Rubric from Illinois Department of Education(2005). The data was analyzed and interpreted in terms of this framework and the specific characteristics shown in the process of problem solving by the teachers were categorized into four types as a result.

  • PDF

A Hybrid Collaborative Filtering Using a Low-dimensional Linear Model (저차원 선형 모델을 이용한 하이브리드 협력적 여과)

  • Ko, Su-Jeong
    • Journal of KIISE:Software and Applications
    • /
    • v.36 no.10
    • /
    • pp.777-785
    • /
    • 2009
  • Collaborative filtering is a technique used to predict whether a particular user will like a particular item. User-based or item-based collaborative techniques have been used extensively in many commercial recommender systems. In this paper, a hybrid collaborative filtering method that combines user-based and item-based methods using a low-dimensional linear model is proposed. The proposed method solves the problems of sparsity and a large database by using NMF among the low-dimensional linear models. In collaborative filtering systems the methods using the NMF are useful in expressing users as semantic relations. However, they are model-based methods and the process of computation is complex, so they can not recommend items dynamically. In order to complement the shortcomings, the proposed method clusters users into groups by using NMF and selects features of groups by using TF-IDF. Mutual information is then used to compute similarities between items. The proposed method clusters users into groups and extracts features of groups on offline and determines the most suitable group for an active user using the features of groups on online. Finally, the proposed method reduces the time required to classify an active user into a group and outperforms previous methods by combining user-based and item-based collaborative filtering methods.

Automatic Recognition Algorithm for Linearly Modulated Signals Under Non-coherent Asynchronous Condition (넌코히어런트 비동기하에서의 선형 변조신호 자동인식 알고리즘)

  • Sim, Kyuhong;Yoon, Wonsik
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.18 no.10
    • /
    • pp.2409-2416
    • /
    • 2014
  • In this paper, an automatic recognition algorithm for linearly modulated signals like PSK, QAM under noncoherent asynchronous condition is proposed. Frequency, phase, and amplitude characteristics of digitally modulated signals are changed periodically. By using this characteristics, cyclic moments and higher order cumulants based features are utilized for the modulation recognition. Hierarchial decision tree method is used for high speed signal processing and totally 4 feature extraction parameters are used for modulation recognition. In the condition where the symbol number is 4,096, the recognition accuracy of the proposed algorithm is more than 95% at SNR 15dB. Also the proposed algorithm is effective to classify the signal which has carrier frequency and phase offset.

Detecting Abnormal Patterns of Network Traffic by Analyzing Linear Patterns and Intensity Features (선형패턴과 명암 특징을 이용한 네트워크 트래픽의 이상현상 감지)

  • Jang, Seok-Woo;Kim, Gye-Young;Na, Hyeon-Suk
    • Journal of the Korea Society of Computer and Information
    • /
    • v.17 no.5
    • /
    • pp.21-28
    • /
    • 2012
  • Recently, the necessity for good techniques of detecting network traffic attack has increased. In this paper, we suggest a new method of detecting abnormal patterns of network traffic data by visualizing their IP and port information into two dimensional images. The proposed approach first generates four 2D images from IP data of transmitters and receivers, and makes one 2D image from port data. Analyzing those images, it then extracts their major features such as linear patterns or high intensity values, and determines if traffic data contain DDoS or DoS Attacks. To comparatively evaluate the performance of the proposed algorithm, we show that our abnormal pattern detection method outperforms the existing algorithm in terms of accuracy and speed.

A Study on Automatic Phoneme Segmentation of Continuous Speech Using Acoustic and Phonetic Information (음향 및 음소 정보를 이용한 연속제의 자동 음소 분할에 대한 연구)

  • 박은영;김상훈;정재호
    • The Journal of the Acoustical Society of Korea
    • /
    • v.19 no.1
    • /
    • pp.4-10
    • /
    • 2000
  • The work presented in this paper is about a postprocessor, which improves the performance of automatic speech segmentation system by correcting the phoneme boundary errors. We propose a postprocessor that reduces the range of errors in the auto labeled results that are ready to be used directly as synthesis unit. Starting from a baseline automatic segmentation system, our proposed postprocessor trains the features of hand labeled results using multi-layer perceptron(MLP) algorithm. Then, the auto labeled result combined with MLP postprocessor determines the new phoneme boundary. The details are as following. First, we select the feature sets of speech, based on the acoustic phonetic knowledge. And then we have adopted the MLP as pattern classifier because of its excellent nonlinear discrimination capability. Moreover, it is easy for MLP to reflect fully the various types of acoustic features appearing at the phoneme boundaries within a short time. At the last procedure, an appropriate feature set analyzed about each phonetic event is applied to our proposed postprocessor to compensate the phoneme boundary error. For phonetically rich sentences data, we have achieved 19.9 % improvement for the frame accuracy, comparing with the performance of plain automatic labeling system. Also, we could reduce the absolute error rate about 28.6%.

  • PDF

Multiple linear regression model-based voltage imbalance estimation for high-power series battery pack (다중선형회귀모델 기반 고출력 직렬 배터리 팩의 전압 불균형 추정)

  • Kim, Seung-Woo;Lee, Pyeong-Yeon;Han, Dong-Ho;Kim, Jong-hoon
    • Journal of IKEEE
    • /
    • v.23 no.1
    • /
    • pp.1-8
    • /
    • 2019
  • In this paper, the electrical characteristics with various C-rates are tested with a high power series battery pack comprised of 18650 cylindrical nickel cobalt aluminum(NCA) lithium-ion battery. The electrical characteristics of discharge capacity test with 14S1P battery pack and electric vehicle (EV) cycle test with 4S1P battery pack are compared and analyzed by the various of C-rates. Multiple linear regression is used to estimate voltage imbalance of 14S1P and 4S1P battery packs with various C-rates based on experimental data. The estimation accuracy is evaluated by root mean square error(RMSE) to validate multiple linear regression. The result of this paper is contributed that to use for estimating the voltage imbalance of discharge capacity test with 14S1P battery pack using multiple linear regression better than to use the voltage imbalance of EV cycle with 4S1P battery pack.

Fingerprint Recognition using Gabor Filter (Gabor 필터를 이용한 지문 인식)

  • Shim, Hyun-Bo;Park, Young-Bae
    • The KIPS Transactions:PartB
    • /
    • v.9B no.5
    • /
    • pp.653-662
    • /
    • 2002
  • Fingerprint recognition is a task to find a matching pattern in a database for a specific persons fingerprint. To accomplish this task, preprocessing, classification, and matching steps are taken for a large-scale fingerprint database but only the matching step is taken without classification for a small-scale database. The primary matching method is based on minutiae (ridge ending point, bifurcation). This matching method, however, requires a very complex computation to extract minutiae and match minutiae-to-minutiae accurately due to translation, rotation, nonlinear deformation of fingerprint and occurrence of spurious minutiae. In addition, this method requires a laborious preprocessing step in order to improve the quality of fingerprint Images. This paper proposes a new simple method to eliminate these problems. With this method, Gabor variance is used instead of minutiae for fingerprint recognition. The Gabor variance is computed from Gabor features that result from filtering a fingerprint image through Gabor filter. In this paper, this method is described and its test result is shown, demonstrating the potential of using this new method for fingerprint recognition.