본 논문에서는 퍼지 클러스터를 이용한 비선형 추론을 위한 퍼지 추론 시스템을 소개한다. 전형적으로, 비선형 추론을 위한 퍼지 규칙의 생성은 일반적으로 입력 벡터 차원이 증가하면 규칙의 수가 지수적으로 증가하게 된다. 이러한 문제점을 해결하기 위해, 퍼지 클러스터를 표현할 수 있는 퍼지 클러스터링 알고리즘을 이용하여 입력 벡터 공간을 분산 형태로 분할하여 퍼지 모델의 규칙을 설계한다. 이러한 방법으로 복잡하고 비선형적인 공정을 퍼지 모델링 할 수 있다. 퍼지 규칙의 전반부는 퍼지 클러스터를 갖는 FCM 클러스터링 알고리즘에 의해 결정된다. 퍼지 규칙의 후반부는 4가지 형태의 다항식 함수의 형태를 가지며, 각 규칙의 후반부 파라미터들은 표준 최소자승법을 이용함으로써 추정된다. 그리고 비선형 공정의 특성 및 성능을 평가하기 위하여 비선형 공정으로 많이 이용되고 있는 데이터를 이용한다. 실험 결과는 비선형 추론이 가능하다는 것을 보여준다.
본 논문은 비선형 공정의 퍼지 모델을 동정하기 위해 전체 입력의 공간 분할 및 퍼지 추론 방법에 따른 퍼지 추론 시스템의 입출력 특성을 분석하며, 퍼지 모델의 입력 변수와 퍼지 입력 공간 분할 및 후반부 다항식 함수에 의한 구조 동정과 파라미터 동정을 통해 비선형 공정을 표현한다. 퍼지 규칙에서 전반부 파라미터의 동정에는 입출력 데이터의 최소 값과 최대 값을 이용하는 최소-최대 방법 및 입출력 데이터를 군집으로 형성하는 C-Means 클러스터링 알고리즘을 사용하여 입력 공간을 분할한다. 또한 전반부 멤버쉽 함수는 삼각형 멤버쉽 함수를 사용하여 입력 공간을 형성한다. 후반부 동정에서 퍼지 추론 방법은 간략 추론 및 선형 추론에 의해 시스템을 표현한다. 또한, 각 규칙의 후반부 파라미터들, 즉 후반부 다항식의 계수를 동정하기 위해 표준 최소자승법을 사용한다. 마지막으로, 비선형 공정으로는 널리 이용되는 가스로 데이터를 사용하며 이 공정에 대해 성능을 평가한다.
본 논문은 비선형 시스템의 퍼지모델을 위해 정보 granules 기반 퍼지 추론 시스템의 새로운 설계 및 이의 최적화를 제시한다. 퍼지모델은 주로 경험적 방법에 의해 추출되기 때문에 보다 구체적이고 체계적인 방법에 의한 동정 및 최적화 될 필요성이 요구된다. 일반적으로, 정보 granules는 근접성, 유사성 또는 기능성 둥에 인하여 서로 결합되는 요소(특히, 수치 데이터)의 실체이다. 제안된 퍼지 모델은 정보 데이터의 특성을 살리기 위해 HCM 클러스터링 방법에 의해 전반부/후반부 구조 및 파라미터 동정을 시행한다. 두 가지 형태의 퍼지 추론 방법은 간략 추론과 선형추론에 의해 수행되며 삼각형 멤버쉽 함수를 사용한다. 구축된 정보 granule 기반 퍼지 모델은 유전자 알고리즘을 이용하여 전반부 파라미터를 최적으로 동정한다. 제안된 비선형 모델의 성능평가는 수치적인 예를 통해 비교 평가한다.
본 논문은 비선형 시스템의 퍼지모델을 위해 정보 Granules 기반 퍼지추론 시스템 모델의 최적화를 제시한다. 퍼지모델은 주로 경험적 방법에 의해 추출되기 때문에 보다 구체적이고 체계적인 방법에 의한 동정 및 최적화 될 필요성이 요구된다. 제안된 규칙베이스 퍼지모델은 HCM 클러스터링 방법, 컴플렉스 알고리즘 및 퍼지추론 방법을 이용하여 시스템 구조와 파라미터 동정을 수행한다. 두 가지 형태의 퍼지모델 추론 방법은 간략추론, 선형추론에 의해 시행된다. 본 논문에서는 퍼지모델의 입력변수와 퍼지 입력 공간 분할 및 입출력 데이타의 중심값을 구해서 후반부 다항식함수에 의한 정보 Granules 기반 구조 동정과 파라미터 동정을 통해 비선형 시스템을 표현한다. 전반부 파라미터의 동정에는 HCM 클러스터링 방법과 컴플렉스 알고리즘을 사용하고, 후반부는 표준 HCM 클러스터링과 표준 최소자승법을 사용하여 동정한다. 그리고 학습 및 테스트 데이타의 성능견과의 상호균형을 얻기 위한 하중값을 가진 성능지수를 제시함으로써 근사화와 예측성능의 향상을 꾀한다. 제안된 비선형 모델의 성능평가를 통해 그 우수성을 보인다.
본 논문에서는 간편 간접추론방법을 이용한 퍼지 디지털 PID 제어기의 설계 방법을 제안하였다. 제안된 퍼지 제어기는 선형 디지털 PID 제어기에서 유도하였으며, 간편 간접추론을 이용한 퍼지화부, 제어규칙 베이스 및 퍼지화부의 설계방법을 설명하였다. 제안된 퍼지 제어기는 종래의 디지털 PID 제어기를 기초로 설계하였으므로 구조를 이해하기 쉽고, 퍼지입력에 의한 비선형 특성을 가지므로 선형 및 비선형 플랜트에 적응 능력을 가진다. 또한 각 입력변수 별로 간편 간접추론방법을 사용하여 추론하므로 고속 추론이 가능하고, 퍼지규칙의 수가 증가하여도 쉽게 적용 가능하다. 제안된 제어기의 성능을 D. Misir 등이 사용한 선형 및 비선형 플랜트에 모의 실험하여 효용성을 입증하였다.
이 논문은 학습을 통해 관측 데이터로부터 퍼지 추론 모듈을 생성할 수 있는 적응 능력을 갖는 모듈화 퍼지추론 시스템을 제안한다. 제안한 시스템은 TS 퍼지모델과 모듈화 신경회로망의 구조적 유사성을 기초로 한다. 학습과정은 새로운 퍼지추론 모듈의 생성과 모듈 파라미터의 갱신으로 구성된다. 퍼지추론 모듈은 국부모델망과 퍼지 게이팅망으로 구성된다. 제안한 시스템의 파라미터들은 표준 LMS 알고리즘을 이용하여 최적화된다. 제안한 시스템의 성능은 비선형 동적 시스템 적응제어에의 응용을 통해서 입증된다.
본 논문은 퍼지 추론 시스템 모델의 최적화를 제시한다. 비선형적이고 복잡한 실시스템의 특성을 해석하는 방법으로써 시스템의 정적 혹은 동적 특성을 묘사하기 위해 퍼지 모델이 사용된다. 그러나 퍼지 시스템의 동정은 경험적 방법에 의해 규칙을 추출하기 때문에, 보다 논리적이고 체계적인 방법에 의한 추출 방법의 고찰이 필요하다. 제안된 규칙베이스 퍼지모델은 GA 및 퍼지규칙의 이론을 이용한 시스템 구조와 파라미터 동정을 시향한다. 두형태의 퍼지모델 방법은 간략추론 및 선형추론에 의해 시행된다. 본 논문에서는 퍼지 추론 시스템의 전반부 파라미터 동정을 통해 퍼지 입력공간을 정의함으로써 비선형 시스템을 표현한다. 전반부 파라미터의 동정세는 유전자 알고리즘을 사용하고, 후번부는 표준가우스 소거법을 사용하여 동정한다. 최적화는 유전자 알고리즘에 기초한 자동-동조 방법이며, 학습 및 데이터의 성능결과의 상호 균형을 얻기 위한 하중값을 가진 성능지수가 제시된다.
본 논문에서는 컬러 디지털 영상에서의 특징점 추출을 위한 퍼지 임계치 설정기법을 제안한다. 이를 위하여 두 가지 종류의 퍼지 측정자를 사용하여 임계치를 계산하는 퍼지추론 시스템을 구성한다. 퍼지추론 시스템에 사용된 측정자들은 디지털 영상에서의 국부영역 밝기를 매우 잘 반영할 뿐만 아니라 특징점 추출 성능이 매우 우수함을 보여준다. 또한, 퍼지측정자로 사용되는 비선형 스케치 특징점 추출 필터의 특성을 도식적으로 해석하였고 특징점들의 특성이 반영된 퍼지추론 시스템을 설계하였다. 이와 같이 설계된 퍼지추론 시스템을 통해 디지털 영상에 포함된 특징점의 특성이 반영된 임계치를 선택하였다. 실험결과를 통해 제안된 퍼지 임계치 추론 방법이 매우 유용성을 증명할 수 있었다.
퍼지모델은 주로 경험적 방법에 의해 추출되기 때문에 보다 구체적이고 체계적인 방법에 의한 동정 및 최적화 될 필요성이 요구된다. 일반적으로, 정보 granules는 근접성, 유사성 또는 기능성 등에 인하여 서로 결합되는 요소(특히, 수치 데이터)의 실체이다. 본 논문에서는 비선형 시스템의 퍼지모델을 위해 정보 granules에 의한 퍼지 관계 기반 퍼지 추론 시스템을 최적 설계한다. 제안된 퍼지 모델은 정보 데이터의 특성을 살리기 위해 HCtl 클러스터링 방법에 의한 중심값을 이용하여 모든 입력변수가 상호 관계한 전반부/후반부 구조 및 파라미터 동정을 시행한다. 두 가지 형태의 퍼지 추론 방법은 간략 추론과 선형추론에 의해 수행되고 삼각형 멤버쉽 함수를 사용한다. 구축된 정보 granule 기반 퍼지 모델은 유전자 알고리즘을 이용하여 전반부 파라미터를 최적으로 동정한다. 그리고 학습 및 테스트 데이터의 성능 결과의 상호균형을 얻기 위한 하중값을 가진 성능지수를 사용하여 근사화와 예측성능의 향상을 꾀하며, 기존 문헌과의 성능비교를 통해 제안된 퍼지 모델을 평가한다.
본 논문은 유전자 알고리즘 기반 퍼지 다항식 뉴럴네트워크(Genetic Algorithm-based Fuzzy Polynomial Neural Networks ; GAs-based FPNN)를 이용하여 비선형 데이터의 최적화 추론 알고리즘을 제안한다. FPNN의 각 노드는 GMDH와 퍼지규칙을 기초로 만들었다. FPNN의 각 노드는 퍼지 다항식 뉴론(Fuzzy Polynomial Neuron : FPN)이라고 표현하다. 제안된 모델은 구조 선택에 있어서 유전자 알고리즘(Genetic Algorithms : GAs)을 이용하였다. 유전자 알고리즘을 사용하여 입력의 차수와 입력의 개수 그리고 후반부 추론의 형태를 최적 선택하였다. 비선형 데이터에 대한 모델 설계를 위해 최적화 알고리즘인 유전자 알고리즘 기반 FPNN 모델 설계가 유용하고 효과적임을 보인다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.