• Title/Summary/Keyword: 비선형 최적설계

Search Result 452, Processing Time 0.023 seconds

Analysis of the optimum optical signal power and the longest transmission length in nonlinear optical transmission systems (비선형 광통신 시스템에서 최대 전송거리 및 최적 광신호 세기 도출에 관한 연구)

  • Kim, Sung-Man
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.7 no.3
    • /
    • pp.567-571
    • /
    • 2012
  • To design the long-haul optical communication system, we need to decide the type of optical fiber and optical amplifier, span length of optical amplifier, dispersion compensation method, optical signal power, etc. Therefore, we need to predict the performance of optical communication system when we change one of the system parameters. In this paper, we investigate the method of predicting the maximum transmission length of the designed optical communication system and finding the optimum optical signal power to obtain the maximum transmission length.

The Optimum Structural Design of the High-speed Surface Effect Ship using Composite Materials - Minimum Weight Design (복합재료 쌍동형 초고속선의 최적 구조 설계 - 최소 중량 설계)

  • Chang-Doo Jang;Ho-Kyung Kim
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.35 no.2
    • /
    • pp.94-103
    • /
    • 1998
  • Recently, many researches are carried for high-speed and light craft. In this study, the optimum structural design procedure and the computer program are developed to minimize the hull weight of SES(Surface Effect Ship) built of composite materials. Three types of composite materials-Sandwich, Single Skin and Hybrid type- are considered and the efficiency of each type is investigated. In design process, the optimum design of main members is performed at first considering longitudinal strength. And then, the transverse member design is performed considering torsional strength SSDP(Structural Synthesis Design program) of U.S. Navy is adopted for design algorithm and DnV classification nile for design loads and strength criteria. For optimum structural design, ES 1+1 optimization technique is used.

  • PDF

Aerodynamic Optimization of Helicopter Blade Planform (I): Design Optimization Techniques (헬리콥터 블레이드 플랜폼 공력 최적설계(I): 최적설계 기법)

  • Kim, Chang-Joo;Park, Soo-Hyung;O, Seon-Gu;Kim, Seung-Ho;Jeong, Gi-Hun;Kim, Seung-Beom
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.38 no.11
    • /
    • pp.1049-1059
    • /
    • 2010
  • This paper treats the aerodynamic optimization of the blade planform for helicopters. The blade shapes, which should be determined during the threedimensional aerodynamic configuration design step, are defined and are parameterized using the B$\acute{e}$zier curves. This research focuses on the design approaches generally adopted by industries and or research institutes using their own experiences and know-hows for the parameterization and for the definition of design constraints. The hover figure of merit and the equivalent lift-to-drag ratio for the forward flight are used to define the objective function. The resultant nonlinear programming (NLP) problem is solved using the sequential quadratic programming (SQP) method. The applications show the present method can design the important planform shapes such as the airfoil distribution, twist and chord variations in the efficient manner.

Design of an OPtimal Controller for the Nonlinear Robot Manipulators with the Actuator Dynamics (조작기의 동특성을 고려한 비선형 로봇 매니퓰레이터의 최적 제어기 설계)

  • 김학범;이양범
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.18 no.9
    • /
    • pp.1376-1385
    • /
    • 1993
  • This paper presents a new dynamic model which is represented by the second order differenatial equation and itcludes the robot arm dynamics as well as the actuator dynamics. The model exhibits excellent performance in the steady state and transient response. In addition the time varing nonlinear and coupled dynamic system has been linearized and decoupled by using nonlinear feedback and linearization method. In this case a pole assignment law is used to improve stability, and the optimal control altorithm is applied to the error equation to minimize the path error. In applying the proposed algorithm to the three joint manipulator with actuators, we obtained very encouraging results.

  • PDF

A Study on Optimal Identification of Fuzzy Polynomial Neural Networks Model Using Genetic Algorithms (유전자 알고리즘을 이용한 FPNN 모델의 최적 동정에 관한 연구)

  • 이인태;박호성;오성권
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2004.10a
    • /
    • pp.429-432
    • /
    • 2004
  • 본 논문은 기존의 퍼지 다항식 뉴럴 네트워크 (Fuzzy Polynomial Neural Networks ; FPNN) 모델을 이용하여 비선형성 데이터에 대한 추론을 제안한다. 복잡한 비선형 시스템의 모델동정을 위하여 생성된 GMDH 방법에 기초한 FPNN의 각 노드는 퍼지 규칙을 기반으로 구축되었으며, 층이 진행되는 동안 모델 스스로 노드의 선택과 제거를 통해 최적의 네트워크 구조를 생성할 수 있는 유연성을 가지고 있다. FPNN 각각의 활성노드를 퍼지다항식 뉴론(Fuzzy Polynomial Neuron ; FPN)이라고 표현한다. FPNN의 후반부 구조는 입출력 변수 사이 의 간략과 회귀다항식 (1차, 2차, 변형된 2차식) 함수에 의해 구현된다. 규칙의 전반부 멤버쉽 함수는 삼각형과 가우시안형의 멤버쉽 함수가 사용된다. 또한 유전자 알고리즘을 사용하여 각노드의 부분표현식을 구성하는 입력변수의 수, 입력변수와 차수의 선택 동조를 통하여 최적의 Genetic Algorithms(GAs)을 이용한 FPNN모델을 설계하는 것이 유용하고 효과적임을 보인다.

  • PDF

Optimal Terminal Guidance Law for BTT Missiles considering Impact Angle (표적 충돌각을 고려한 BTT 미사일용 최적 종말 유도 법칙)

  • Park, Noh-Yong;Park, Jin-Won;Song, Seong-Ho;Ha, In-Joong
    • Proceedings of the KIEE Conference
    • /
    • 2007.10a
    • /
    • pp.217-218
    • /
    • 2007
  • 최근 개발된 비선형 자동조종 제어기를 사용하면 비행 환경에 무관하게 BTT 미사일의 입출력 동특성이 일정한 선형 시스템의 형대로 표현될 수 있다. 본 논문에서는 이와 같은 특성을 바탕으로 BTT 미사일이 목표물의 취약 지점을 정밀하게 요격할 수 있도록 자동조종장치 동역학의 시간 지연 효과를 고려하여 표적 충돌각을 최소화하는 최적 종말 유도 법칙을 설계하였다. 제안된 최적 종말 유도 법칙은 극좌표 변환을 사용하지 않기 때문에 가제어성을 보장하며, 가속도 편향값을 사용하지 않기 때문에 기존의 유도 법칙에 비하여 미사일의 기동성을 향상시킬 수 있는 장점을 갖는다.

  • PDF

Design Optimization of Blade Stiffened Laminated Composite Plates (보강된 적층평판의 최적화 설계)

  • Shin, Yung Seok
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.13 no.1
    • /
    • pp.65-74
    • /
    • 1993
  • The buckling load of a blade stiffened laminated composite plate having midplane symmetry is maximized for a given total weight. The thicknesses of the layers and the width and height of the stiffener are taken as the design variables. Buckling analysis is carried out using a finite element method. The optimization problem is solved using an IMSL subroutine. Due to the highly nonlinear nature of the optimality equations, several local optimum solutions are found. Various combinations of fiber orientation for the laminate layers and the blade stiffener are investigated to examine their relative efficiency. Out of several cases examined, the best design was produced from the combination of ($0^{\circ}Beam/0^{\circ}/90^{\circ}$)s.

  • PDF

Preliminary Study on Optimization of the Tube Hydroforming Process Using the Equivalent Static Loads (등가정하중을 이용한 튜브 하이드로포밍 공정 최적설계에 관한 기초연구)

  • Jang, Hwan-Hak;Park, Gyung-Jin;Kim, Tai-Kyung
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.39 no.3
    • /
    • pp.259-268
    • /
    • 2015
  • An optimization method for the tube hydroforming process is developed using the equivalent static loads method for non linear static response structural optimization (ESLSO). The aims of the tube hydroforming optimization are to determine the axial forces (axial feedings) and the internal pressures, and to obtain the desired shape without failures after hydroforming analysis. Therefore, the magnitude of the forces should be design variables in the optimization process. Also, some tube hydroforming optimization needs to consider the result of the thickness in nonlinear dynamic analysis as responses. However, the external forces are considered as constants and the thickness is not a response in the linear response optimization process of the original ESLSO. Thus, a new ESLSO process is proposed to overcome the difficulties and some examples are solved to validate the proposed method.

An Optimum Design of Steel Frames by Second Order Elastic Analysis (2차 탄성해석법에 의한 강뼈대 구조물의 최적설계)

  • Park, Moon-Ho;Jang, Chun-Ho;Kim, Ki-Wook
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.10 no.2
    • /
    • pp.123-133
    • /
    • 2006
  • The main objective of this study is to develop an optimization algorithm of framed structures with rigid and various semi-rigid connections using the multilevel dynamic programming and the sequential unconstrained minimization techniques (SUMT). The second-order elastic analysis is performed for steel framed structures. The second order elastic analysis is developed based on nonlinear beam-column theory considering the bowing effect. The following semi-rigid connections are considered; double web angle, top-seat angle and top-seat angle with web angle. We considered the three connection models, such as modified exponential, polynomial and three parameter model. The total weight of the structural steel is used as the objective function in the optimization process. The dimensions of steel cross section are selected as the design variables. The design constraints consist of strength requirements for axial, shear and flexural resistance and serviceability requirements.

Optimization for the structure of all-optical filter transistor in nonlinear photonic crystals using Genetic Algorithm (유전자 알고리즘을 이용한 비선형 광자결정 내의 완전 광 필터 트랜지스터 구조의 최적화)

  • Lee, Hyuek-Jae
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.9 no.2
    • /
    • pp.129-134
    • /
    • 2008
  • In this paper, we carry out the simulation for an optimal solution of one-dimensional nonlinear photonic crystal structure using Genetic algorithm, and show the proposed method to apply for photonic transistors. Unlike a conventional steepest descent method for an optimization, the proposed method based on Genetic Algorithm has advantages for finding out excellent solutions without any analytic forms, which can easily apply to other applications. Also, as several solutions around global minimum solution can be obtained, it is very good optimization tool to give us the patterns about the optimal structure of a photonic crystal transistor. To design an all-optical filter transistor, Neural network algorithm is firstly performed for an initial design and then Genetic Algorithm is finally used to get the optimal solution. From the simulation of one-dimensional photonic crystal transistor, 27dB of the switching On/Off ratio is obtained.

  • PDF